예제 #1
0
    def __del__(self):
        if __debug__:
            debug('CLF_', 'Destroying libsvm.SVMProblem %s' % ` self `)

        svmc.delete_svm_problem(self.prob)
        svmc.delete_double(self.y_array)
        for i in range(self.size):
            svmc.svm_node_array_destroy(self.data[i])
        svmc.svm_node_matrix_destroy(self.x_matrix)
예제 #2
0
파일: _svm.py 프로젝트: arokem/PyMVPA
    def __del__(self):
        if __debug__:
            debug('CLF_', 'Destroying libsvm.SVMProblem %s' % `self`)

        svmc.delete_svm_problem(self.prob)
        svmc.delete_double(self.y_array)
        for i in range(self.size):
            svmc.svm_node_array_destroy(self.data[i])
        svmc.svm_node_matrix_destroy(self.x_matrix)
예제 #3
0
 def predict_values_raw(self, x):
     #convert x into SVMNode, allocate a double array for return
     n = self.nr_class * (self.nr_class - 1) // 2
     data = seq_to_svm_node(x)
     dblarr = svmc.new_double(n)
     svmc.svm_predict_values(self.model, data, dblarr)
     ret = double_array_to_list(dblarr, n)
     svmc.delete_double(dblarr)
     svmc.svm_node_array_destroy(data)
     return ret
예제 #4
0
파일: _svm.py 프로젝트: arokem/PyMVPA
 def predict_values_raw(self, x):
     #convert x into SVMNode, allocate a double array for return
     n = self.nr_class*(self.nr_class-1)//2
     data = seq_to_svm_node(x)
     dblarr = svmc.new_double(n)
     svmc.svm_predict_values(self.model, data, dblarr)
     ret = double_array_to_list(dblarr, n)
     svmc.delete_double(dblarr)
     svmc.svm_node_array_destroy(data)
     return ret
예제 #5
0
    def predict_probability(self, x):
        #c code will do nothing on wrong type, so we have to check ourself
        if self.svm_type == NU_SVR or self.svm_type == EPSILON_SVR:
            raise TypeError, "call get_svr_probability or get_svr_pdf " \
                             "for probability output of regression"
        elif self.svm_type == ONE_CLASS:
            raise TypeError, "probability not supported yet for one-class " \
                             "problem"
        #only C_SVC, NU_SVC goes in
        if not self.probability:
            raise TypeError, "model does not support probabiliy estimates"

        #convert x into SVMNode, alloc a double array to receive probabilities
        data = seq_to_svm_node(x)
        dblarr = svmc.new_double(self.nr_class)
        pred = svmc.svm_predict_probability(self.model, data, dblarr)
        pv = double_array_to_list(dblarr, self.nr_class)
        svmc.delete_double(dblarr)
        svmc.svm_node_array_destroy(data)
        p = {}
        for i in range(len(self.labels)):
            p[self.labels[i]] = pv[i]
        return pred, p
예제 #6
0
파일: _svm.py 프로젝트: arokem/PyMVPA
    def predict_probability(self, x):
        #c code will do nothing on wrong type, so we have to check ourself
        if self.svm_type == NU_SVR or self.svm_type == EPSILON_SVR:
            raise TypeError, "call get_svr_probability or get_svr_pdf " \
                             "for probability output of regression"
        elif self.svm_type == ONE_CLASS:
            raise TypeError, "probability not supported yet for one-class " \
                             "problem"
        #only C_SVC, NU_SVC goes in
        if not self.probability:
            raise TypeError, "model does not support probabiliy estimates"

        #convert x into SVMNode, alloc a double array to receive probabilities
        data = seq_to_svm_node(x)
        dblarr = svmc.new_double(self.nr_class)
        pred = svmc.svm_predict_probability(self.model, data, dblarr)
        pv = double_array_to_list(dblarr, self.nr_class)
        svmc.delete_double(dblarr)
        svmc.svm_node_array_destroy(data)
        p = {}
        for i in range(len(self.labels)):
            p[self.labels[i]] = pv[i]
        return pred, p
예제 #7
0
def free_double_array(x):
    if x != 'NULL' and x != None:
        svmc.delete_double(x)
예제 #8
0
파일: _svm.py 프로젝트: arokem/PyMVPA
def free_double_array(x):
    if x != 'NULL' and x != None:
        svmc.delete_double(x)