def test_cache_speedup(self): skip_if_no_external('shogun', ver_dep='shogun:rev', min_version=4455) from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.datasets.splitters import NFoldSplitter from time import time from mvpa.clfs.transerror import TransferError from mvpa.kernels.base import CachedKernel from mvpa.kernels.sg import RbfSGKernel from mvpa.misc.data_generators import normal_feature_dataset ck = sgSVM(kernel=CachedKernel(kernel=RbfSGKernel(sigma=2)), C=1) sk = sgSVM(kernel=RbfSGKernel(sigma=2), C=1) cv_c = CrossValidatedTransferError(TransferError(ck), splitter=NFoldSplitter()) cv_s = CrossValidatedTransferError(TransferError(sk), splitter=NFoldSplitter()) #data = datasets['uni4large'] P = 5000 data = normal_feature_dataset(snr=2, perlabel=200, nchunks=10, means=np.random.randn(2, P), nfeatures=P) t0 = time() ck.params.kernel.compute(data) cachetime = time()-t0 t0 = time() cached_err = cv_c(data) ccv_time = time()-t0 t0 = time() norm_err = cv_s(data) ncv_time = time()-t0 assert_almost_equal(np.asanyarray(cached_err), np.asanyarray(norm_err)) ok_(cachetime<ncv_time) ok_(ccv_time<ncv_time) #print 'Regular CV time: %s seconds'%ncv_time #print 'Caching time: %s seconds'%cachetime #print 'Cached CV time: %s seconds'%ccv_time speedup = ncv_time/(ccv_time+cachetime) #print 'Speedup factor: %s'%speedup # Speedup ideally should be 10, though it's not purely linear self.failIf(speedup < 2, 'Problem caching data - too slow!')
def test_cache_speedup(self): skip_if_no_external('shogun', ver_dep='shogun:rev', min_version=4455) ck = sgSVM(kernel=CachedKernel(kernel=RbfSGKernel(sigma=2)), C=1) sk = sgSVM(kernel=RbfSGKernel(sigma=2), C=1) cv_c = CrossValidatedTransferError(TransferError(ck), splitter=NFoldSplitter()) cv_s = CrossValidatedTransferError(TransferError(sk), splitter=NFoldSplitter()) #data = datasets['uni4large'] P = 5000 data = normal_feature_dataset(snr=2, perlabel=200, nchunks=10, means=np.random.randn(2, P), nfeatures=P) t0 = time() ck.params.kernel.compute(data) cachetime = time() - t0 t0 = time() cached_err = cv_c(data) ccv_time = time() - t0 t0 = time() norm_err = cv_s(data) ncv_time = time() - t0 assert_almost_equal(np.asanyarray(cached_err), np.asanyarray(norm_err)) ok_(cachetime < ncv_time) ok_(ccv_time < ncv_time) #print 'Regular CV time: %s seconds'%ncv_time #print 'Caching time: %s seconds'%cachetime #print 'Cached CV time: %s seconds'%ccv_time speedup = ncv_time / (ccv_time + cachetime) #print 'Speedup factor: %s'%speedup # Speedup ideally should be 10, though it's not purely linear self.failIf(speedup < 2, 'Problem caching data - too slow!')
def test_cached_kernel_different_datasets(self): skip_if_no_external('shogun', ver_dep='shogun:rev', min_version=4455) # Inspired by the problem Swaroop ran into k = LinearSGKernel(normalizer_cls=False) k_ = LinearSGKernel(normalizer_cls=False) # to be cached ck = CachedKernel(k_) clf = sgSVM(svm_impl='libsvm', kernel=k, C=-1) clf_ = sgSVM(svm_impl='libsvm', kernel=ck, C=-1) cvte = CrossValidatedTransferError(TransferError(clf), NFoldSplitter()) cvte_ = CrossValidatedTransferError(TransferError(clf_), NFoldSplitter()) te = TransferError(clf) te_ = TransferError(clf_) for r in xrange(2): ds1 = datasets['uni2medium'] errs1 = cvte(ds1) ck.compute(ds1) ok_(ck._recomputed) errs1_ = cvte_(ds1) ok_(~ck._recomputed) assert_array_equal(errs1, errs1_) ds2 = datasets['uni3small'] errs2 = cvte(ds2) ck.compute(ds2) ok_(ck._recomputed) errs2_ = cvte_(ds2) ok_(~ck._recomputed) assert_array_equal(errs2, errs2_) ssel = np.round(datasets['uni2large'].samples[:5, 0]).astype(int) terr = te(datasets['uni3small_test'][ssel], datasets['uni3small_train'][::2]) terr_ = te_(datasets['uni3small_test'][ssel], datasets['uni3small_train'][::2]) ok_(~ck._recomputed) ok_(terr == terr_)
def test_cached_kernel_different_datasets(self): skip_if_no_external('shogun', ver_dep='shogun:rev', min_version=4455) # Inspired by the problem Swaroop ran into k = LinearSGKernel(normalizer_cls=False) k_ = LinearSGKernel(normalizer_cls=False) # to be cached ck = CachedKernel(k_) clf = sgSVM(svm_impl='libsvm', kernel=k, C=-1) clf_ = sgSVM(svm_impl='libsvm', kernel=ck, C=-1) cvte = CrossValidation(clf, NFoldPartitioner()) cvte_ = CrossValidation(clf_, NFoldPartitioner()) postproc=BinaryFxNode(mean_mismatch_error, 'targets') te = ProxyMeasure(clf, postproc=postproc) te_ = ProxyMeasure(clf_, postproc=postproc) for r in xrange(2): ds1 = datasets['uni2medium'] errs1 = cvte(ds1) ck.compute(ds1) ok_(ck._recomputed) errs1_ = cvte_(ds1) ok_(~ck._recomputed) assert_array_equal(errs1, errs1_) ds2 = datasets['uni3small'] errs2 = cvte(ds2) ck.compute(ds2) ok_(ck._recomputed) errs2_ = cvte_(ds2) ok_(~ck._recomputed) assert_array_equal(errs2, errs2_) ssel = np.round(datasets['uni2large'].samples[:5, 0]).astype(int) te.train(datasets['uni3small'][::2]) terr = np.asscalar(te(datasets['uni3small'][ssel])) te_.train(datasets['uni3small'][::2]) terr_ = np.asscalar(te_(datasets['uni3small'][ssel])) ok_(~ck._recomputed) ok_(terr == terr_)
def test_cached_kernel_different_datasets(self): skip_if_no_external('shogun', ver_dep='shogun:rev', min_version=4455) # Inspired by the problem Swaroop ran into k = LinearSGKernel(normalizer_cls=False) k_ = LinearSGKernel(normalizer_cls=False) # to be cached ck = CachedKernel(k_) clf = sgSVM(svm_impl='libsvm', kernel=k, C=-1) clf_ = sgSVM(svm_impl='libsvm', kernel=ck, C=-1) cvte = CrossValidatedTransferError( TransferError(clf), NFoldSplitter()) cvte_ = CrossValidatedTransferError( TransferError(clf_), NFoldSplitter()) te = TransferError(clf) te_ = TransferError(clf_) for r in xrange(2): ds1 = datasets['uni2medium'] errs1 = cvte(ds1) ck.compute(ds1) ok_(ck._recomputed) errs1_ = cvte_(ds1) ok_(~ck._recomputed) assert_array_equal(errs1, errs1_) ds2 = datasets['uni3small'] errs2 = cvte(ds2) ck.compute(ds2) ok_(ck._recomputed) errs2_ = cvte_(ds2) ok_(~ck._recomputed) assert_array_equal(errs2, errs2_) ssel = np.round(datasets['uni2large'].samples[:5, 0]).astype(int) terr = te(datasets['uni3small_test'][ssel], datasets['uni3small_train'][::2]) terr_ = te_(datasets['uni3small_test'][ssel], datasets['uni3small_train'][::2]) ok_(~ck._recomputed) ok_(terr == terr_)
def test_cache_speedup(self): skip_if_no_external('shogun', ver_dep='shogun:rev', min_version=4455) ck = sgSVM(kernel=CachedKernel(kernel=RbfSGKernel(sigma=2)), C=1) sk = sgSVM(kernel=RbfSGKernel(sigma=2), C=1) cv_c = CrossValidation(ck, NFoldPartitioner()) cv_s = CrossValidation(sk, NFoldPartitioner()) #data = datasets['uni4large'] P = 5000 data = normal_feature_dataset(snr=2, perlabel=200, nchunks=10, means=np.random.randn(2, P), nfeatures=P) t0 = time() ck.params.kernel.compute(data) cachetime = time()-t0 t0 = time() cached_err = cv_c(data) ccv_time = time()-t0 t0 = time() norm_err = cv_s(data) ncv_time = time()-t0 assert_almost_equal(np.asanyarray(cached_err), np.asanyarray(norm_err)) ok_(cachetime<ncv_time) ok_(ccv_time<ncv_time) #print 'Regular CV time: %s seconds'%ncv_time #print 'Caching time: %s seconds'%cachetime #print 'Cached CV time: %s seconds'%ccv_time speedup = ncv_time/(ccv_time+cachetime) #print 'Speedup factor: %s'%speedup # Speedup ideally should be 10, though it's not purely linear self.failIf(speedup < 2, 'Problem caching data - too slow!')
def test_vstack_and_origids_issue(self): # That is actually what swaroop hit skip_if_no_external('shogun', ver_dep='shogun:rev', min_version=4455) # Inspired by the problem Swaroop ran into k = LinearSGKernel(normalizer_cls=False) k_ = LinearSGKernel(normalizer_cls=False) # to be cached ck = CachedKernel(k_) clf = sgSVM(svm_impl='libsvm', kernel=k, C=-1) clf_ = sgSVM(svm_impl='libsvm', kernel=ck, C=-1) cvte = CrossValidatedTransferError( TransferError(clf), NFoldSplitter()) cvte_ = CrossValidatedTransferError( TransferError(clf_), NFoldSplitter()) ds = datasets['uni2large_test'].copy(deep=True) ok_(~('orig_ids' in ds.sa)) # assure that there are None ck.compute(ds) # so we initialize origids ok_('origids' in ds.sa) ds2 = ds.copy(deep=True) ds2.samples = np.zeros(ds2.shape) from mvpa.base.dataset import vstack ds_vstacked = vstack((ds2, ds)) # should complaint now since there would not be unique # samples' origids if __debug__: assert_raises(ValueError, ck.compute, ds_vstacked) ds_vstacked.init_origids('samples') # reset origids ck.compute(ds_vstacked) errs = cvte(ds_vstacked) errs_ = cvte_(ds_vstacked) # Following test would have failed since origids # were just ints, and then non-unique after vstack assert_array_equal(errs.samples, errs_.samples)
def test_vstack_and_origids_issue(self): # That is actually what swaroop hit skip_if_no_external('shogun', ver_dep='shogun:rev', min_version=4455) # Inspired by the problem Swaroop ran into k = LinearSGKernel(normalizer_cls=False) k_ = LinearSGKernel(normalizer_cls=False) # to be cached ck = CachedKernel(k_) clf = sgSVM(svm_impl='libsvm', kernel=k, C=-1) clf_ = sgSVM(svm_impl='libsvm', kernel=ck, C=-1) cvte = CrossValidatedTransferError(TransferError(clf), NFoldSplitter()) cvte_ = CrossValidatedTransferError(TransferError(clf_), NFoldSplitter()) ds = datasets['uni2large_test'].copy(deep=True) ok_(~('orig_ids' in ds.sa)) # assure that there are None ck.compute(ds) # so we initialize origids ok_('origids' in ds.sa) ds2 = ds.copy(deep=True) ds2.samples = np.zeros(ds2.shape) from mvpa.base.dataset import vstack ds_vstacked = vstack((ds2, ds)) # should complaint now since there would not be unique # samples' origids if __debug__: assert_raises(ValueError, ck.compute, ds_vstacked) ds_vstacked.init_origids('samples') # reset origids ck.compute(ds_vstacked) errs = cvte(ds_vstacked) errs_ = cvte_(ds_vstacked) # Following test would have failed since origids # were just ints, and then non-unique after vstack assert_array_equal(errs.samples, errs_.samples)
class SVMKernelTests(unittest.TestCase): @sweepargs(clf=[lsSVM(), sgSVM()]) def test_basic_clf_train_predict(self, clf): d = datasets['uni4medium'] clf.train(d) clf.predict(d) pass def test_cache_speedup(self): skip_if_no_external('shogun', ver_dep='shogun:rev', min_version=4455) ck = sgSVM(kernel=CachedKernel(kernel=RbfSGKernel(sigma=2)), C=1) sk = sgSVM(kernel=RbfSGKernel(sigma=2), C=1) cv_c = CrossValidatedTransferError(TransferError(ck), splitter=NFoldSplitter()) cv_s = CrossValidatedTransferError(TransferError(sk), splitter=NFoldSplitter()) #data = datasets['uni4large'] P = 5000 data = normal_feature_dataset(snr=2, perlabel=200, nchunks=10, means=np.random.randn(2, P), nfeatures=P) t0 = time() ck.params.kernel.compute(data) cachetime = time() - t0 t0 = time() cached_err = cv_c(data) ccv_time = time() - t0 t0 = time() norm_err = cv_s(data) ncv_time = time() - t0 assert_almost_equal(np.asanyarray(cached_err), np.asanyarray(norm_err)) ok_(cachetime < ncv_time) ok_(ccv_time < ncv_time) #print 'Regular CV time: %s seconds'%ncv_time #print 'Caching time: %s seconds'%cachetime #print 'Cached CV time: %s seconds'%ccv_time speedup = ncv_time / (ccv_time + cachetime) #print 'Speedup factor: %s'%speedup # Speedup ideally should be 10, though it's not purely linear self.failIf(speedup < 2, 'Problem caching data - too slow!') def test_cached_kernel_different_datasets(self): skip_if_no_external('shogun', ver_dep='shogun:rev', min_version=4455) # Inspired by the problem Swaroop ran into k = LinearSGKernel(normalizer_cls=False) k_ = LinearSGKernel(normalizer_cls=False) # to be cached ck = CachedKernel(k_) clf = sgSVM(svm_impl='libsvm', kernel=k, C=-1) clf_ = sgSVM(svm_impl='libsvm', kernel=ck, C=-1) cvte = CrossValidatedTransferError(TransferError(clf), NFoldSplitter()) cvte_ = CrossValidatedTransferError(TransferError(clf_), NFoldSplitter()) te = TransferError(clf) te_ = TransferError(clf_) for r in xrange(2): ds1 = datasets['uni2medium'] errs1 = cvte(ds1) ck.compute(ds1) ok_(ck._recomputed) errs1_ = cvte_(ds1) ok_(~ck._recomputed) assert_array_equal(errs1, errs1_) ds2 = datasets['uni3small'] errs2 = cvte(ds2) ck.compute(ds2) ok_(ck._recomputed) errs2_ = cvte_(ds2) ok_(~ck._recomputed) assert_array_equal(errs2, errs2_) ssel = np.round(datasets['uni2large'].samples[:5, 0]).astype(int) terr = te(datasets['uni3small_test'][ssel], datasets['uni3small_train'][::2]) terr_ = te_(datasets['uni3small_test'][ssel], datasets['uni3small_train'][::2]) ok_(~ck._recomputed) ok_(terr == terr_) def test_vstack_and_origids_issue(self): # That is actually what swaroop hit skip_if_no_external('shogun', ver_dep='shogun:rev', min_version=4455) # Inspired by the problem Swaroop ran into k = LinearSGKernel(normalizer_cls=False) k_ = LinearSGKernel(normalizer_cls=False) # to be cached ck = CachedKernel(k_) clf = sgSVM(svm_impl='libsvm', kernel=k, C=-1) clf_ = sgSVM(svm_impl='libsvm', kernel=ck, C=-1) cvte = CrossValidatedTransferError(TransferError(clf), NFoldSplitter()) cvte_ = CrossValidatedTransferError(TransferError(clf_), NFoldSplitter()) ds = datasets['uni2large_test'].copy(deep=True) ok_(~('orig_ids' in ds.sa)) # assure that there are None ck.compute(ds) # so we initialize origids ok_('origids' in ds.sa) ds2 = ds.copy(deep=True) ds2.samples = np.zeros(ds2.shape) from mvpa.base.dataset import vstack ds_vstacked = vstack((ds2, ds)) # should complaint now since there would not be unique # samples' origids if __debug__: assert_raises(ValueError, ck.compute, ds_vstacked) ds_vstacked.init_origids('samples') # reset origids ck.compute(ds_vstacked) errs = cvte(ds_vstacked) errs_ = cvte_(ds_vstacked) # Following test would have failed since origids # were just ints, and then non-unique after vstack assert_array_equal(errs.samples, errs_.samples)