예제 #1
0
    def _train(self, ds):
        # local binding
        method = self.__method

        # two major modes
        if method == 'union':
            # slice mask default: take none
            mask = np.zeros(ds.shape[1], dtype=np.bool)
            # method: OR
            cfunc = np.logical_or
        elif method == 'intersection':
            # slice mask default: take all
            mask = np.ones(ds.shape[1], dtype=np.bool)
            # method: AND
            cfunc = np.logical_and
        else:
            raise ValueError("Unknown combining method '%s'" % method)

        for fs in self.__selectors:
            # first: train all embedded selections
            fs.train(ds)
            # now get boolean mask of selections
            fsmask = np.zeros(mask.shape, dtype=np.bool)
            # use slicearg to select features
            fsmask[fs._slicearg] = True
            # merge with current global mask
            mask = cfunc(mask, fsmask)

        # turn the derived boolean mask into a slice if possible
        slicearg = mask2slice(mask)
        # and assign to baseclass, done
        self._safe_assign_slicearg(slicearg)
예제 #2
0
파일: slicing.py 프로젝트: esc/PyMVPA
    def _call(self, ds):
        # attribute to detect boundaries
        battr = ds.sa[self.get_space()].value
        # filter which samples to keep
        filter_ = np.ones(battr.shape, dtype='bool')
        # determine boundary indices -- shift by one to have the new value
        # as the boundary
        bindices = (battr[:-1] != battr[1:]).nonzero()[0] + 1

        # for all boundaries
        for b in bindices:
            lower = b - self._prestrip
            upper = b + self._poststrip
            filter_[lower:upper] = False

        filter_ = mask2slice(filter_)

        return ds[filter_]