예제 #1
0
 def test_size_random_prototypes(self):
     self.build_vector_based_pm()
     fraction = 0.5
     prototype_number = max(int(len(self.samples)*fraction),1)
     ## debug("MAP","Generating "+str(prototype_number)+" random prototypes.")
     self.prototypes2 = np.array(random.sample(self.samples, prototype_number))
     self.pm2 = PrototypeMapper(similarities=self.similarities, prototypes=self.prototypes2)
     self.pm2.train(self.samples)
     assert_array_equal(self.pm2.proj.shape, (self.samples.shape[0], self.pm2.prototypes.shape[0]*len(self.similarities)))
예제 #2
0
    def test_streamline_equal_mapper(self):
        self.build_streamline_things()

        self.prototypes_equal = self.dataset.samples
        self.pm = PrototypeMapper(similarities=self.similarities,
                                  prototypes=self.prototypes_equal,
                                  demean=False)
        self.pm.train(self.dataset.samples)
        ## debug("MAP","projected data: "+str(self.pm.proj))
        # check size:
        assert_array_equal(self.pm.proj.shape, (len(self.dataset.samples), len(self.prototypes_equal)*len(self.similarities)))
        # test symmetry
        assert_array_almost_equal(self.pm.proj, self.pm.proj.T)
예제 #3
0
    def build_vector_based_pm(self):
        # samples: 40 samples in 20d space (40x20; samples x features)
        self.samples = np.random.rand(40,20)

        # initial prototypes are samples itself:
        self.prototypes = self.samples.copy()

        # using just two similarities for now:
        self.similarities = [ExponentialKernel(), SquaredExponentialKernel()]
        # set up prototype mapper with prototypes identical to samples.
        self.pm = PrototypeMapper(similarities=self.similarities,
                                  prototypes=self.prototypes)
        # train Prototype
        self.pm.train(self.samples)
예제 #4
0
    def test_streamline_random_mapper(self):
        self.build_streamline_things()

        # Adding one more similarity to test multiple similarities in the streamline case:
        self.similarities.append(StreamlineSimilarity(distance=corouge))

        fraction = 0.5
        prototype_number = max(int(len(self.dataset.samples)*fraction),1)
        ## debug("MAP","Generating "+str(prototype_number)+" random prototypes.")
        self.prototypes_random = self.dataset.samples[np.random.permutation(self.dataset.samples.size)][:prototype_number]
        ## debug("MAP","prototypes: "+str(self.prototypes_random))

        self.pm = PrototypeMapper(similarities=self.similarities, prototypes=self.prototypes_random, demean=False)
        self.pm.train(self.dataset.samples) # , fraction=1.0)
        # test size:
        assert_array_equal(self.pm.proj.shape, (len(self.dataset.samples), len(self.prototypes_random)*len(self.similarities)))
예제 #5
0
 def test_size_random_prototypes(self):
     self.build_vector_based_pm()
     fraction = 0.5
     prototype_number = max(int(len(self.samples)*fraction),1)
     ## debug("MAP","Generating "+str(prototype_number)+" random prototypes.")
     self.prototypes2 = np.array(random.sample(self.samples, prototype_number))
     self.pm2 = PrototypeMapper(similarities=self.similarities, prototypes=self.prototypes2)
     self.pm2.train(self.samples)
     assert_array_equal(self.pm2.proj.shape, (self.samples.shape[0], self.pm2.prototypes.shape[0]*len(self.similarities)))
예제 #6
0
    def test_streamline_equal_mapper(self):
        self.build_streamline_things()

        self.prototypes_equal = self.dataset.samples
        self.pm = PrototypeMapper(similarities=self.similarities,
                                  prototypes=self.prototypes_equal,
                                  demean=False)
        self.pm.train(self.dataset.samples)
        ## debug("MAP","projected data: "+str(self.pm.proj))
        # check size:
        assert_array_equal(self.pm.proj.shape, (len(self.dataset.samples), len(self.prototypes_equal)*len(self.similarities)))
        # test symmetry
        assert_array_almost_equal(self.pm.proj, self.pm.proj.T)
예제 #7
0
    def build_vector_based_pm(self):
        # samples: 40 samples in 20d space (40x20; samples x features)
        self.samples = np.random.rand(40,20)

        # initial prototypes are samples itself:
        self.prototypes = self.samples.copy()

        # using just two similarities for now:
        self.similarities = [ExponentialKernel(), SquaredExponentialKernel()]
        # set up prototype mapper with prototypes identical to samples.
        self.pm = PrototypeMapper(similarities=self.similarities,
                                  prototypes=self.prototypes)
        # train Prototype
        self.pm.train(self.samples)
예제 #8
0
    def test_streamline_random_mapper(self):
        self.build_streamline_things()

        # Adding one more similarity to test multiple similarities in the streamline case:
        self.similarities.append(StreamlineSimilarity(distance=corouge))

        fraction = 0.5
        prototype_number = max(int(len(self.dataset.samples)*fraction),1)
        ## debug("MAP","Generating "+str(prototype_number)+" random prototypes.")
        self.prototypes_random = self.dataset.samples[np.random.permutation(self.dataset.samples.size)][:prototype_number]
        ## debug("MAP","prototypes: "+str(self.prototypes_random))

        self.pm = PrototypeMapper(similarities=self.similarities, prototypes=self.prototypes_random, demean=False)
        self.pm.train(self.dataset.samples) # , fraction=1.0)
        # test size:
        assert_array_equal(self.pm.proj.shape, (len(self.dataset.samples), len(self.prototypes_random)*len(self.similarities)))
예제 #9
0
class PrototypeMapperTests(unittest.TestCase):

    def setUp(self):
        pass

    ##REF: Name was automagically refactored
    @reseed_rng()
    def build_vector_based_pm(self):
        # samples: 40 samples in 20d space (40x20; samples x features)
        self.samples = np.random.rand(40,20)

        # initial prototypes are samples itself:
        self.prototypes = self.samples.copy()

        # using just two similarities for now:
        self.similarities = [ExponentialKernel(), SquaredExponentialKernel()]
        # set up prototype mapper with prototypes identical to samples.
        self.pm = PrototypeMapper(similarities=self.similarities,
                                  prototypes=self.prototypes)
        # train Prototype
        self.pm.train(self.samples)


    def test_size(self):
        self.build_vector_based_pm()
        assert_array_equal(self.pm.proj.shape,
                           (self.samples.shape[0],
                            self.prototypes.shape[0] * len(self.similarities)))


    def test_symmetry(self):
        self.build_vector_based_pm()
        assert_array_almost_equal(self.pm.proj[:,self.samples.shape[0]],
                                  self.pm.proj.T[self.samples.shape[0],:])
        assert_array_equal(self.pm.proj[:,self.samples.shape[0]],
                           self.pm.proj.T[self.samples.shape[0],:])


    def test_size_random_prototypes(self):
        self.build_vector_based_pm()
        fraction = 0.5
        prototype_number = max(int(len(self.samples)*fraction),1)
        ## debug("MAP","Generating "+str(prototype_number)+" random prototypes.")
        self.prototypes2 = np.array(random.sample(self.samples, prototype_number))
        self.pm2 = PrototypeMapper(similarities=self.similarities, prototypes=self.prototypes2)
        self.pm2.train(self.samples)
        assert_array_equal(self.pm2.proj.shape, (self.samples.shape[0], self.pm2.prototypes.shape[0]*len(self.similarities)))

    # 2-nd portion of tests using a Dataset of streamlines

    @reseed_rng()
    def build_streamline_things(self):
        # Build a dataset having samples of different lengths. This is
        # trying to mimic a possible interface for streamlines
        # datasets, i.e., an iterable container of Mx3 points, where M
        # depends on each single streamline.

        # trying to pack it into an 'object' array to prevent conversion in the
        # Dataset
        self.streamline_samples = np.array([
                                   np.random.rand(3,3),
                                   np.random.rand(5,3),
                                   np.random.rand(7,3)],
                                   dtype='object')
        self.dataset = Dataset(self.streamline_samples)
        self.similarities = [StreamlineSimilarity(distance=corouge)]


    def test_streamline_equal_mapper(self):
        self.build_streamline_things()

        self.prototypes_equal = self.dataset.samples
        self.pm = PrototypeMapper(similarities=self.similarities,
                                  prototypes=self.prototypes_equal,
                                  demean=False)
        self.pm.train(self.dataset.samples)
        ## debug("MAP","projected data: "+str(self.pm.proj))
        # check size:
        assert_array_equal(self.pm.proj.shape, (len(self.dataset.samples), len(self.prototypes_equal)*len(self.similarities)))
        # test symmetry
        assert_array_almost_equal(self.pm.proj, self.pm.proj.T)


    def test_streamline_random_mapper(self):
        self.build_streamline_things()

        # Adding one more similarity to test multiple similarities in the streamline case:
        self.similarities.append(StreamlineSimilarity(distance=corouge))

        fraction = 0.5
        prototype_number = max(int(len(self.dataset.samples)*fraction),1)
        ## debug("MAP","Generating "+str(prototype_number)+" random prototypes.")
        self.prototypes_random = self.dataset.samples[np.random.permutation(self.dataset.samples.size)][:prototype_number]
        ## debug("MAP","prototypes: "+str(self.prototypes_random))

        self.pm = PrototypeMapper(similarities=self.similarities, prototypes=self.prototypes_random, demean=False)
        self.pm.train(self.dataset.samples) # , fraction=1.0)
        # test size:
        assert_array_equal(self.pm.proj.shape, (len(self.dataset.samples), len(self.prototypes_random)*len(self.similarities)))
예제 #10
0
class PrototypeMapperTests(unittest.TestCase):

    def setUp(self):
        pass

    ##REF: Name was automagically refactored
    def build_vector_based_pm(self):
        # samples: 40 samples in 20d space (40x20; samples x features)
        self.samples = np.random.rand(40,20)

        # initial prototypes are samples itself:
        self.prototypes = self.samples.copy()

        # using just two similarities for now:
        self.similarities = [ExponentialKernel(), SquaredExponentialKernel()]
        # set up prototype mapper with prototypes identical to samples.
        self.pm = PrototypeMapper(similarities=self.similarities,
                                  prototypes=self.prototypes)
        # train Prototype
        self.pm.train(self.samples)


    def test_size(self):
        self.build_vector_based_pm()
        assert_array_equal(self.pm.proj.shape,
                           (self.samples.shape[0],
                            self.prototypes.shape[0] * len(self.similarities)))


    def test_symmetry(self):
        self.build_vector_based_pm()
        assert_array_almost_equal(self.pm.proj[:,self.samples.shape[0]],
                                  self.pm.proj.T[self.samples.shape[0],:])
        assert_array_equal(self.pm.proj[:,self.samples.shape[0]],
                           self.pm.proj.T[self.samples.shape[0],:])


    def test_size_random_prototypes(self):
        self.build_vector_based_pm()
        fraction = 0.5
        prototype_number = max(int(len(self.samples)*fraction),1)
        ## debug("MAP","Generating "+str(prototype_number)+" random prototypes.")
        self.prototypes2 = np.array(random.sample(self.samples, prototype_number))
        self.pm2 = PrototypeMapper(similarities=self.similarities, prototypes=self.prototypes2)
        self.pm2.train(self.samples)
        assert_array_equal(self.pm2.proj.shape, (self.samples.shape[0], self.pm2.prototypes.shape[0]*len(self.similarities)))

    ##REF: Name was automagically refactored
    def build_streamline_things(self):
        # Build a dataset having samples of different lengths. This is
        # trying to mimic a possible interface for streamlines
        # datasets, i.e., an iterable container of Mx3 points, where M
        # depends on each single streamline.

        # trying to pack it into an 'object' array to prevent conversion in the
        # Dataset
        self.streamline_samples = np.array([
                                   np.random.rand(3,3),
                                   np.random.rand(5,3),
                                   np.random.rand(7,3)],
                                   dtype='object')
        self.dataset = Dataset(self.streamline_samples)
        self.similarities = [StreamlineSimilarity(distance=corouge)]


    def test_streamline_equal_mapper(self):
        self.build_streamline_things()

        self.prototypes_equal = self.dataset.samples
        self.pm = PrototypeMapper(similarities=self.similarities,
                                  prototypes=self.prototypes_equal,
                                  demean=False)
        self.pm.train(self.dataset.samples)
        ## debug("MAP","projected data: "+str(self.pm.proj))
        # check size:
        assert_array_equal(self.pm.proj.shape, (len(self.dataset.samples), len(self.prototypes_equal)*len(self.similarities)))
        # test symmetry
        assert_array_almost_equal(self.pm.proj, self.pm.proj.T)


    def test_streamline_random_mapper(self):
        self.build_streamline_things()

        # Adding one more similarity to test multiple similarities in the streamline case:
        self.similarities.append(StreamlineSimilarity(distance=corouge))

        fraction = 0.5
        prototype_number = max(int(len(self.dataset.samples)*fraction),1)
        ## debug("MAP","Generating "+str(prototype_number)+" random prototypes.")
        self.prototypes_random = self.dataset.samples[np.random.permutation(self.dataset.samples.size)][:prototype_number]
        ## debug("MAP","prototypes: "+str(self.prototypes_random))

        self.pm = PrototypeMapper(similarities=self.similarities, prototypes=self.prototypes_random, demean=False)
        self.pm.train(self.dataset.samples) # , fraction=1.0)
        # test size:
        assert_array_equal(self.pm.proj.shape, (len(self.dataset.samples), len(self.prototypes_random)*len(self.similarities)))