def test_eep_load(): eb = EEPBin(os.path.join(pymvpa_dataroot, 'eep.bin')) ds = [ eep_dataset(source, targets=[1, 2]) for source in (eb, os.path.join(pymvpa_dataroot, 'eep.bin')) ] for d in ds: assert_equal(d.nsamples, 2) assert_equal(d.nfeatures, 128) assert_equal(np.unique(d.fa.channels[4*23:4*23+4]), 'Pz') assert_array_almost_equal([np.arange(-0.002, 0.005, 0.002)] * 32, d.a.mapper.reverse1(d.fa.timepoints))
def test_streamline_equal_mapper(self): self.build_streamline_things() self.prototypes_equal = self.dataset.samples self.pm = PrototypeMapper(similarities=self.similarities, prototypes=self.prototypes_equal, demean=False) self.pm.train(self.dataset.samples) ## debug("MAP","projected data: "+str(self.pm.proj)) # check size: assert_array_equal(self.pm.proj.shape, (len(self.dataset.samples), len(self.prototypes_equal)*len(self.similarities))) # test symmetry assert_array_almost_equal(self.pm.proj, self.pm.proj.T)
def test_eep_load(): eb = EEPBin(os.path.join(pymvpa_dataroot, 'eep.bin')) ds = [ eep_dataset(source, targets=[1, 2]) for source in (eb, os.path.join(pymvpa_dataroot, 'eep.bin')) ] for d in ds: assert_equal(d.nsamples, 2) assert_equal(d.nfeatures, 128) assert_equal(np.unique(d.fa.channels[4 * 23:4 * 23 + 4]), 'Pz') assert_array_almost_equal([np.arange(-0.002, 0.005, 0.002)] * 32, d.a.mapper.reverse1(d.fa.timepoints))
def test_array_collectable(): c = ArrayCollectable() # empty by default assert_equal(c.name, None) assert_equal(c.value, None) # late assignment c.name = 'somename' assert_raises(ValueError, c._set, 12345) assert_equal(c.value, None) c.value = np.arange(5) assert_equal(c.name, 'somename') assert_array_equal(c.value, np.arange(5)) # immediate content data = np.random.random(size=(3,10)) c = ArrayCollectable(data.copy(), 'myname', "This is a test", length=3) assert_equal(c.name, 'myname') assert_array_equal(c.value, data) assert_equal(c.__doc__, "This is a test") assert_equal(str(c), 'myname') # repr from numpy import array e = eval(repr(c)) assert_equal(e.name, 'myname') assert_array_almost_equal(e.value, data) assert_equal(e.__doc__, "This is a test") # cannot assign array of wrong length assert_raises(ValueError, c._set, np.arange(5)) assert_equal(len(c), 3) # shallow copy DOES create a view of value array c.value = np.arange(3) d = copy.copy(c) assert_true(d.value.base is c.value) # names starting with _ are not allowed assert_raises(ValueError, c._set_name, "_underscore")
def test_array_collectable(): c = ArrayCollectable() # empty by default assert_equal(c.name, None) assert_equal(c.value, None) # late assignment c.name = 'somename' assert_raises(ValueError, c._set, 12345) assert_equal(c.value, None) c.value = np.arange(5) assert_equal(c.name, 'somename') assert_array_equal(c.value, np.arange(5)) # immediate content data = np.random.random(size=(3, 10)) c = ArrayCollectable(data.copy(), 'myname', "This is a test", length=3) assert_equal(c.name, 'myname') assert_array_equal(c.value, data) assert_equal(c.__doc__, "This is a test") assert_equal(str(c), 'myname') # repr from numpy import array e = eval(repr(c)) assert_equal(e.name, 'myname') assert_array_almost_equal(e.value, data) assert_equal(e.__doc__, "This is a test") # cannot assign array of wrong length assert_raises(ValueError, c._set, np.arange(5)) assert_equal(len(c), 3) # shallow copy DOES create a view of value array c.value = np.arange(3) d = copy.copy(c) assert_true(d.value.base is c.value) # names starting with _ are not allowed assert_raises(ValueError, c._set_name, "_underscore")
def test_mapper_vs_zscore(): """Test by comparing to results of elderly z-score function """ # data: 40 sample feature line in 20d space (40x20; samples x features) dss = [ dataset_wizard(np.concatenate( [np.arange(40) for i in range(20)]).reshape(20,-1).T, targets=1, chunks=1), ] + datasets.values() for ds in dss: ds1 = deepcopy(ds) ds2 = deepcopy(ds) zsm = ZScoreMapper(chunks_attr=None) assert_raises(RuntimeError, zsm.forward, ds1.samples) zsm.train(ds1) ds1z = zsm.forward(ds1.samples) zscore(ds2, chunks_attr=None) assert_array_almost_equal(ds1z, ds2.samples) assert_array_equal(ds1.samples, ds.samples)
def test_symmetry(self): self.build_vector_based_pm() assert_array_almost_equal(self.pm.proj[:,self.samples.shape[0]], self.pm.proj.T[self.samples.shape[0],:]) assert_array_equal(self.pm.proj[:,self.samples.shape[0]], self.pm.proj.T[self.samples.shape[0],:])
def test_zscore(): """Test z-scoring transformation """ # dataset: mean=2, std=1 samples = np.array((0, 1, 3, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2, 2, 2, 2)).\ reshape((16, 1)) data = dataset_wizard(samples.copy(), targets=range(16), chunks=[0] * 16) assert_equal(data.samples.mean(), 2.0) assert_equal(data.samples.std(), 1.0) zscore(data, chunks_attr='chunks') # check z-scoring check = np.array([-2, -1, 1, 2, 0, 0, 1, -1, -1, 1, 1, -1, 0, 0, 0, 0], dtype='float64').reshape(16, 1) assert_array_equal(data.samples, check) data = dataset_wizard(samples.copy(), targets=range(16), chunks=[0] * 16) zscore(data, chunks_attr=None) assert_array_equal(data.samples, check) # check z-scoring taking set of labels as a baseline data = dataset_wizard(samples.copy(), targets=[0, 2, 2, 2, 1] + [2] * 11, chunks=[0] * 16) zscore(data, param_est=('targets', [0, 1])) assert_array_equal(samples, data.samples + 1.0) # check that zscore modifies in-place; only guaranteed if no upcasting is # necessary samples = samples.astype('float') data = dataset_wizard(samples, targets=[0, 2, 2, 2, 1] + [2] * 11, chunks=[0] * 16) zscore(data, param_est=('targets', [0, 1])) assert_array_equal(samples, data.samples) # these might be duplicating code above -- but twice is better than nothing # dataset: mean=2, std=1 raw = np.array((0, 1, 3, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2, 2, 2, 2)) # dataset: mean=12, std=1 raw2 = np.array((0, 1, 3, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2, 2, 2, 2)) + 10 # zscore target check = [-2, -1, 1, 2, 0, 0, 1, -1, -1, 1, 1, -1, 0, 0, 0, 0] ds = dataset_wizard(raw.copy(), targets=range(16), chunks=[0] * 16) pristine = dataset_wizard(raw.copy(), targets=range(16), chunks=[0] * 16) zm = ZScoreMapper() # should do global zscore by default zm.train(ds) # train assert_array_almost_equal(zm.forward(ds), np.transpose([check])) # should not modify the source assert_array_equal(pristine, ds) # if we tell it a different mean it should obey the order zm = ZScoreMapper(params=(3,1)) zm.train(ds) assert_array_almost_equal(zm.forward(ds), np.transpose([check]) - 1 ) assert_array_equal(pristine, ds) # let's look at chunk-wise z-scoring ds = dataset_wizard(np.hstack((raw.copy(), raw2.copy())), targets=range(32), chunks=[0] * 16 + [1] * 16) # by default chunk-wise zm = ZScoreMapper() zm.train(ds) # train assert_array_almost_equal(zm.forward(ds), np.transpose([check + check])) # we should be able to do that same manually zm = ZScoreMapper(params={0: (2,1), 1: (12,1)}) zm.train(ds) # train assert_array_almost_equal(zm.forward(ds), np.transpose([check + check]))
def test_zscore(): """Test z-scoring transformation """ # dataset: mean=2, std=1 samples = np.array((0, 1, 3, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2, 2, 2, 2)).\ reshape((16, 1)) data = dataset_wizard(samples.copy(), targets=range(16), chunks=[0] * 16) assert_equal(data.samples.mean(), 2.0) assert_equal(data.samples.std(), 1.0) data_samples = data.samples.copy() zscore(data, chunks_attr='chunks') # copy should stay intact assert_equal(data_samples.mean(), 2.0) assert_equal(data_samples.std(), 1.0) # we should be able to operate on ndarrays # But we can't change type inplace for an array, can't we? assert_raises(TypeError, zscore, data_samples, chunks_attr=None) # so lets do manually data_samples = data_samples.astype(float) zscore(data_samples, chunks_attr=None) assert_array_equal(data.samples, data_samples) print data_samples # check z-scoring check = np.array([-2, -1, 1, 2, 0, 0, 1, -1, -1, 1, 1, -1, 0, 0, 0, 0], dtype='float64').reshape(16, 1) assert_array_equal(data.samples, check) data = dataset_wizard(samples.copy(), targets=range(16), chunks=[0] * 16) zscore(data, chunks_attr=None) assert_array_equal(data.samples, check) # check z-scoring taking set of labels as a baseline data = dataset_wizard(samples.copy(), targets=[0, 2, 2, 2, 1] + [2] * 11, chunks=[0] * 16) zscore(data, param_est=('targets', [0, 1])) assert_array_equal(samples, data.samples + 1.0) # check that zscore modifies in-place; only guaranteed if no upcasting is # necessary samples = samples.astype('float') data = dataset_wizard(samples, targets=[0, 2, 2, 2, 1] + [2] * 11, chunks=[0] * 16) zscore(data, param_est=('targets', [0, 1])) assert_array_equal(samples, data.samples) # these might be duplicating code above -- but twice is better than nothing # dataset: mean=2, std=1 raw = np.array((0, 1, 3, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2, 2, 2, 2)) # dataset: mean=12, std=1 raw2 = np.array((0, 1, 3, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2, 2, 2, 2)) + 10 # zscore target check = [-2, -1, 1, 2, 0, 0, 1, -1, -1, 1, 1, -1, 0, 0, 0, 0] ds = dataset_wizard(raw.copy(), targets=range(16), chunks=[0] * 16) pristine = dataset_wizard(raw.copy(), targets=range(16), chunks=[0] * 16) zm = ZScoreMapper() # should do global zscore by default zm.train(ds) # train assert_array_almost_equal(zm.forward(ds), np.transpose([check])) # should not modify the source assert_array_equal(pristine, ds) # if we tell it a different mean it should obey the order zm = ZScoreMapper(params=(3,1)) zm.train(ds) assert_array_almost_equal(zm.forward(ds), np.transpose([check]) - 1 ) assert_array_equal(pristine, ds) # let's look at chunk-wise z-scoring ds = dataset_wizard(np.hstack((raw.copy(), raw2.copy())), targets=range(32), chunks=[0] * 16 + [1] * 16) # by default chunk-wise zm = ZScoreMapper() zm.train(ds) # train assert_array_almost_equal(zm.forward(ds), np.transpose([check + check])) # we should be able to do that same manually zm = ZScoreMapper(params={0: (2,1), 1: (12,1)}) zm.train(ds) # train assert_array_almost_equal(zm.forward(ds), np.transpose([check + check]))