def main(): sac_attr = SampleAttributes(TSTATS_DIR + 'sac_attr.txt') nav_attr = SampleAttributes(TSTATS_DIR + 'nav_bin_attr.txt') # labels xtask_run = [ # down/powerless, up/powerful [1, 2], # down/powerless [2, 1], # up/powerful ] intask_run = [ # no comparison within a task [0, 0], [0, 0] ] labels = squareform( np.vstack([np.hstack([intask_run] * 6 + [xtask_run] * 2)] * 6 + [np.hstack([xtask_run] * 6 + [intask_run] * 2)] * 2)) for subj in subject_list: subj_mask = MASK_DIR + '%s_ribbon_rsmp0_dil3mm.nii.gz' % subj dataset = get_nav_sac_data(nav_attr, sac_attr, subj, subj_mask) dataset = remove_invariant_features(dataset) print(dataset.targets, dataset.chunks) # searchlight similarity = CustomDist(labels) searchlight = sphere_searchlight(similarity, SEARCHLIGHT_RADIUS) searchlight_map = searchlight(dataset) # save files nifti = map2nifti(data=searchlight_map, dataset=dataset) nifti.to_filename(OUTDIR + '%s_%s_%dvox_sim.nii.gz' % (subj, DIRCT, SEARCHLIGHT_RADIUS))
def main(): subject_list = sys.argv[1:] if len(sys.argv) > 1 else EVERYONE print(subject_list) attr = SampleAttributes(TSTATS_DIR + TSTATS_NAME + '_attr.txt') for subj in subject_list: tstats_file = TSTATS_DIR + TSTATS_NAME + '_tstats/%s_%s.nii.gz' % ( subj, TSTATS_NAME) dataset = fmri_dataset(samples=tstats_file, mask=MASK_DIR + '%s_ribbon_rsmp0_dil3mm.nii.gz' % subj) dataset.sa['chunks'] = attr.chunks dataset.sa['targets'] = attr.targets dataset = remove_invariant_features(dataset) similarity = CustomDist(squareform(LABELS_NAV)) searchlight = sphere_searchlight(similarity, SEARCHLIGHT_RADIUS) searchlight_map = searchlight(dataset) # save files nifti = map2nifti(data=searchlight_map, dataset=dataset) nifti.to_filename(OUTDIR + OUTFILE % (subj, SEARCHLIGHT_RADIUS))
print np.array(job_table).shape behav_file = 'sub' + sub + '_attr.txt' bold_fname = os.path.join(cwd1, sub, 'betas_sub' + sub + '.nii.gz') #full functional timeseries (beta series) attr_fname = os.path.join(cwd1, 'all_attr', behav_file) #codes stimuli number and run number attr = mvpa2.SampleAttributes(attr_fname) #loads attributes into pymvpa ds = mvpa2.fmri_dataset(bold_fname, targets=attr.targets, chunks=attr.chunks) ds = mvpa2.remove_nonfinite_features(ds) ds = mvpa2.remove_invariant_features(ds) #this basically breaks up the brain into 100 different areas (to parallelize the searchlight) try: ds = ds[:, fset_num * 1000:(fset_num * 1000) + 1000] except: ds = ds[:, fset_num * 1000:] stimuli = [] for i in range(0, 54): stimuli.append(ds.uniquetargets[i]) #create all possible pairs for confusion matrix pair_list = list(itertools.combinations(range(len(stimuli)), 2)) pair_list2 = [] for x in range(0, len(pair_list)):
fn3 = '/scratch/scratch/ucjtbob/narps1_subval_entropy/BIC_level2/BIC_medians.nii.gz' #fn_BIC_diff = '/scratch/scratch/ucjtbob//BIC_diffs_results/subval_minus_entropy_means.nii.gz_T.nii.gz_tfce_corrp_tstat1.nii.gz' #ds_diff = mvpa2.fmri_dataset(fn_BIC_diff) accumbens = '/scratch/scratch/ucjtbob/narps_masks/Accumbens_narps.nii.gz' amygdala = '/scratch/scratch/ucjtbob/narps_masks/Amygdala_narps.nii.gz' fmc = '/scratch/scratch/ucjtbob/narps_masks/Frontal_Medial_Cortex_narps.nii.gz' msk = None ds1 = mvpa2.fmri_dataset(fn1, mask=msk) ds2 = mvpa2.fmri_dataset(fn2, mask=msk) ds3 = mvpa2.fmri_dataset(fn3, mask=msk) ds1 = mvpa2.remove_invariant_features(ds1) ds2 = mvpa2.remove_invariant_features(ds2) ds3 = mvpa2.remove_invariant_features(ds3) bic_sums = [np.sum(ds1.samples), np.sum(ds2.samples), np.sum(ds3.samples)] np.argsort(bic_sums) bic_means = [np.mean(ds1.samples), np.mean(ds2.samples), np.mean(ds3.samples)] np.argsort(bic_means) #bic_means[0]/bic_means[1] #bic_means bic_mins = [np.min(ds1.samples), np.min(ds2.samples), np.min(ds3.samples)] bic_medians = [ np.median(ds1.samples),