def test_prediction(self): D, X, Y, Z, noise_var, lengthscale, variance = self.gen_data() Xt = np.random.rand(20, 3) m_gpy = GPy.models.SparseGPRegression(X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), num_inducing=3) m_gpy.likelihood.variance = noise_var dtype = 'float64' m = self.gen_mxfusion_model(dtype, D, Z, noise_var, lengthscale, variance) observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt) infr2 = TransferInference(ModulePredictionAlgorithm(m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:,0], var_mf), (var_gpy[:,0], var_mf) # noisy, diagonal mu_gpy, var_gpy = m_gpy.predict(Xt) infr2 = TransferInference(ModulePredictionAlgorithm(m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.sgp_predict.noise_free = False res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:,0], var_mf), (var_gpy[:,0], var_mf) # noise_free, full_cov mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt, full_cov=True) infr2 = TransferInference(ModulePredictionAlgorithm(m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.sgp_predict.diagonal_variance = False infr2.inference_algorithm.model.Y.factor.sgp_predict.noise_free = True res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy, var_mf), (var_gpy, var_mf) # noisy, full_cov mu_gpy, var_gpy = m_gpy.predict(Xt, full_cov=True) infr2 = TransferInference(ModulePredictionAlgorithm(m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.sgp_predict.diagonal_variance = False infr2.inference_algorithm.model.Y.factor.sgp_predict.noise_free = False res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy, var_mf), (var_gpy, var_mf)
def test_with_samples(self): from mxfusion.common import config config.DEFAULT_DTYPE = 'float64' dtype = 'float64' D, X, Y, noise_var, lengthscale, variance = self.gen_data() m = Model() m.N = Variable() m.X = Normal.define_variable(mean=0, variance=1, shape=(m.N, 3)) m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype)) kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype) m.Y = GPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, shape=(m.N, D)) q = create_Gaussian_meanfield(model=m, observed=[m.Y]) infr = GradBasedInference( inference_algorithm=StochasticVariationalInference( model=m, posterior=q, num_samples=10, observed=[m.Y])) infr.run(Y=mx.nd.array(Y, dtype='float64'), max_iter=2, learning_rate=0.1, verbose=True) infr2 = Inference( ForwardSamplingAlgorithm(model=m, observed=[m.X], num_samples=5)) infr2.run(X=mx.nd.array(X, dtype='float64')) infr_pred = TransferInference(ModulePredictionAlgorithm( model=m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params) xt = np.random.rand(13, 3) res = infr_pred.run(X=mx.nd.array(xt, dtype=dtype))[0] gp = m.Y.factor gp.attach_prediction_algorithms( targets=gp.output_names, conditionals=gp.input_names, algorithm=GPRegressionSamplingPrediction(gp._module_graph, gp._extra_graphs[0], [gp._module_graph.X]), alg_name='gp_predict') gp.gp_predict.diagonal_variance = False gp.gp_predict.jitter = 1e-6 infr_pred2 = TransferInference(ModulePredictionAlgorithm( model=m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params) xt = np.random.rand(13, 3) res = infr_pred2.run(X=mx.nd.array(xt, dtype=dtype))[0]
def test_prediction(self): np.random.seed(0) np.random.seed(0) X = np.random.rand(10, 3) Y = np.random.rand(10, 1) Z = np.random.rand(3, 3) qU_mean = np.random.rand(3, 1) qU_cov_W = np.random.rand(3, 3) qU_cov_diag = np.random.rand(3,) noise_var = np.random.rand(1) lengthscale = np.random.rand(3) variance = np.random.rand(1) qU_chol = np.linalg.cholesky(qU_cov_W.dot(qU_cov_W.T)+np.diag(qU_cov_diag))[None,:,:] Xt = np.random.rand(5, 3) m_gpy = GPy.core.SVGP(X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var)) m_gpy.q_u_mean = qU_mean m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol) dtype = 'float64' m = Model() m.N = Variable() m.X = Variable(shape=(m.N, 3)) m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype)) m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype)) kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype) m.Y = SVGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, inducing_inputs=m.Z, shape=(m.N, 1), dtype=dtype) gp = m.Y.factor observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) infr.initialize(X=X.shape, Y=Y.shape) infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt) infr2 = TransferInference(ModulePredictionAlgorithm(m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:,0], var_mf), (var_gpy[:,0], var_mf) # noisy, diagonal mu_gpy, var_gpy = m_gpy.predict(Xt) infr2 = TransferInference(ModulePredictionAlgorithm(m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.svgp_predict.noise_free = False res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:,0], var_mf), (var_gpy[:,0], var_mf)
def test_sampling_prediction_w_mean(self): D, X, Y, Z, noise_var, lengthscale, variance, qU_mean, \ qU_cov_W, qU_cov_diag, qU_chol = self.gen_data() Xt = np.random.rand(20, 3) dtype = 'float64' m, gp, net = self.gen_mxfusion_model_w_mean(dtype, D, Z, noise_var, lengthscale, variance) observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal infr_pred = TransferInference(ModulePredictionAlgorithm( model=m, observed=[m.X], target_variables=[m.Y], num_samples=5), infr_params=infr.params) gp = m.Y.factor gp.attach_prediction_algorithms( targets=gp.output_names, conditionals=gp.input_names, algorithm=SVGPRegressionSamplingPrediction(gp._module_graph, gp._extra_graphs[0], [gp._module_graph.X]), alg_name='svgp_predict') gp.svgp_predict.diagonal_variance = True gp.svgp_predict.noise_free = False gp.svgp_predict.jitter = 1e-6 y_samples = infr_pred.run(X=mx.nd.array(Xt, dtype=dtype))[0].asnumpy()
def test_sampling_prediction(self): D, X, Y, Z, noise_var, lengthscale, variance = self.gen_data() Xt = np.random.rand(20, 3) m_gpy = GPy.models.SparseGPRegression(X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), num_inducing=3) m_gpy.likelihood.variance = noise_var dtype = 'float64' m = self.gen_mxfusion_model(dtype, D, Z, noise_var, lengthscale, variance) observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal infr_pred = TransferInference(ModulePredictionAlgorithm(model=m, observed=[m.X], target_variables=[m.Y], num_samples=5), infr_params=infr.params) gp = m.Y.factor gp.attach_prediction_algorithms( targets=gp.output_names, conditionals=gp.input_names, algorithm=SparseGPRegressionSamplingPrediction( gp._module_graph, gp._extra_graphs[0], [gp._module_graph.X]), alg_name='sgp_predict') gp.sgp_predict.diagonal_variance = False gp.sgp_predict.jitter = 1e-6 y_samples = infr_pred.run(X=mx.nd.array(Xt, dtype=dtype))[0].asnumpy()
def test_prediction_w_mean(self): D, X, Y, Z, noise_var, lengthscale, variance = self.gen_data() Xt = np.random.rand(20, 3) dtype = 'float64' m, net = self.gen_mxfusion_model_w_mean( dtype, D, Z, noise_var, lengthscale, variance) mean = net(mx.nd.array(X, dtype=dtype)).asnumpy() mean_t = net(mx.nd.array(Xt, dtype=dtype)).asnumpy() m_gpy = GPy.models.SparseGPRegression(X=X, Y=Y-mean, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance)) m_gpy.likelihood.variance = noise_var observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt) mu_gpy += mean_t infr2 = TransferInference(ModulePredictionAlgorithm(m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf, rtol=1e-04, atol=1e-05), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:,0], var_mf, rtol=1e-04, atol=1e-05), (var_gpy[:,0], var_mf)
def test_sampling_prediction(self): np.random.seed(0) X = np.random.rand(10, 3) Xt = np.random.rand(20, 3) Y = np.random.rand(10, 1) noise_var = np.random.rand(1) lengthscale = np.random.rand(3) variance = np.random.rand(1) m_gpy = GPy.models.GPRegression(X=X, Y=Y, kernel=GPy.kern.RBF( 3, ARD=True, lengthscale=lengthscale, variance=variance), noise_var=noise_var) dtype = 'float64' m = Model() m.N = Variable() m.X = Variable(shape=(m.N, 3)) m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype)) kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype) m.Y = GPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, shape=(m.N, 1), dtype=dtype) observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) infr_pred = TransferInference(ModulePredictionAlgorithm( model=m, observed=[m.X], target_variables=[m.Y], num_samples=5), infr_params=infr.params) gp = m.Y.factor gp.attach_prediction_algorithms( targets=gp.output_names, conditionals=gp.input_names, algorithm=GPRegressionSamplingPrediction(gp._module_graph, gp._extra_graphs[0], [gp._module_graph.X]), alg_name='gp_predict') gp.gp_predict.diagonal_variance = False gp.gp_predict.jitter = 1e-6 y_samples = infr_pred.run(X=mx.nd.array(Xt, dtype=dtype))[0].asnumpy()
def test_sampling_prediction(self): D, X, Y, Z, noise_var, lengthscale, variance, qU_mean, \ qU_cov_W, qU_cov_diag, qU_chol = self.gen_data() Xt = np.random.rand(5, 3) m_gpy = GPy.core.SVGP( X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var)) m_gpy.q_u_mean = qU_mean m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol) dtype = 'float64' m, gp = self.gen_mxfusion_model(dtype, D, Z, noise_var, lengthscale, variance) observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) infr.initialize(X=X.shape, Y=Y.shape) infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal infr_pred = TransferInference(ModulePredictionAlgorithm( model=m, observed=[m.X], target_variables=[m.Y], num_samples=5), infr_params=infr.params) gp = m.Y.factor gp.attach_prediction_algorithms( targets=gp.output_names, conditionals=gp.input_names, algorithm=SVGPRegressionSamplingPrediction(gp._module_graph, gp._extra_graphs[0], [gp._module_graph.X]), alg_name='svgp_predict') gp.svgp_predict.diagonal_variance = False gp.svgp_predict.noise_free = False gp.svgp_predict.jitter = 1e-6 y_samples = infr_pred.run(X=mx.nd.array(Xt, dtype=dtype))[0].asnumpy()
def test_sampling_prediction(self): np.random.seed(0) np.random.seed(0) X = np.random.rand(10, 3) Y = np.random.rand(10, 1) Z = np.random.rand(3, 3) qU_mean = np.random.rand(3, 1) qU_cov_W = np.random.rand(3, 3) qU_cov_diag = np.random.rand(3,) noise_var = np.random.rand(1) lengthscale = np.random.rand(3) variance = np.random.rand(1) qU_chol = np.linalg.cholesky(qU_cov_W.dot(qU_cov_W.T)+np.diag(qU_cov_diag))[None,:,:] Xt = np.random.rand(5, 3) m_gpy = GPy.core.SVGP(X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var)) m_gpy.q_u_mean = qU_mean m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol) dtype = 'float64' m = Model() m.N = Variable() m.X = Variable(shape=(m.N, 3)) m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype)) m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype)) kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype) m.Y = SVGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, inducing_inputs=m.Z, shape=(m.N, 1), dtype=dtype) gp = m.Y.factor observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) infr.initialize(X=X.shape, Y=Y.shape) infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal infr_pred = TransferInference(ModulePredictionAlgorithm(model=m, observed=[m.X], target_variables=[m.Y], num_samples=5), infr_params=infr.params) gp = m.Y.factor gp.attach_prediction_algorithms( targets=gp.output_names, conditionals=gp.input_names, algorithm=SVGPRegressionSamplingPrediction( gp._module_graph, gp._extra_graphs[0], [gp._module_graph.X]), alg_name='svgp_predict') gp.svgp_predict.diagonal_variance = False gp.svgp_predict.jitter = 1e-6 y_samples = infr_pred.run(X=mx.nd.array(Xt, dtype=dtype))[0].asnumpy()
def test_prediction_w_mean(self): D, X, Y, Z, noise_var, lengthscale, variance, qU_mean, \ qU_cov_W, qU_cov_diag, qU_chol = self.gen_data() Xt = np.random.rand(5, 3) dtype = 'float64' m, gp, net = self.gen_mxfusion_model_w_mean(dtype, D, Z, noise_var, lengthscale, variance) mean = net(mx.nd.array(X, dtype=dtype)).asnumpy() mean_t = net(mx.nd.array(Xt, dtype=dtype)).asnumpy() m_gpy = GPy.core.SVGP( X=X, Y=Y - mean, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var)) m_gpy.q_u_mean = qU_mean m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol) observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) infr.initialize(X=X.shape, Y=Y.shape) infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt) mu_gpy += mean_t infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf, rtol=1e-04, atol=1e-05), (mu_gpy, mu_mf) assert np.allclose(var_gpy, var_mf, rtol=1e-04, atol=1e-05), (var_gpy, var_mf)
def test_prediction(self): np.random.seed(0) X = np.random.rand(10, 3) Xt = np.random.rand(20, 3) Y = np.random.rand(10, 1) noise_var = np.random.rand(1) lengthscale = np.random.rand(3) variance = np.random.rand(1) m_gpy = GPy.models.GPRegression(X=X, Y=Y, kernel=GPy.kern.RBF( 3, ARD=True, lengthscale=lengthscale, variance=variance), noise_var=noise_var) dtype = 'float64' m = Model() m.N = Variable() m.X = Variable(shape=(m.N, 3)) m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype)) kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype) m.Y = GPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, shape=(m.N, 1), dtype=dtype) observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt) infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:, 0], var_mf), (var_gpy[:, 0], var_mf) # noisy, diagonal mu_gpy, var_gpy = m_gpy.predict(Xt) infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.gp_predict.noise_free = False res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:, 0], var_mf), (var_gpy[:, 0], var_mf) # noise_free, full_cov mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt, full_cov=True) infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.gp_predict.diagonal_variance = False infr2.inference_algorithm.model.Y.factor.gp_predict.noise_free = True res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy, var_mf), (var_gpy, var_mf) # noisy, full_cov mu_gpy, var_gpy = m_gpy.predict(Xt, full_cov=True) infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.gp_predict.diagonal_variance = False infr2.inference_algorithm.model.Y.factor.gp_predict.noise_free = False res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] print((var_gpy, var_mf)) assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy, var_mf), (var_gpy, var_mf)
def test_prediction(self): D, X, Y, Z, noise_var, lengthscale, variance, qU_mean, \ qU_cov_W, qU_cov_diag, qU_chol = self.gen_data() Xt = np.random.rand(5, 3) m_gpy = GPy.core.SVGP( X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var)) m_gpy.q_u_mean = qU_mean m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol) dtype = 'float64' m, gp = self.gen_mxfusion_model(dtype, D, Z, noise_var, lengthscale, variance) observed = [m.X, m.Y] infr = Inference(MAP(model=m, observed=observed), dtype=dtype) infr.initialize(X=X.shape, Y=Y.shape) infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype) infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype) loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype)) # noise_free, diagonal mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt) infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:, 0], var_mf), (var_gpy[:, 0], var_mf) # noisy, diagonal mu_gpy, var_gpy = m_gpy.predict(Xt) infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.svgp_predict.noise_free = False res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:, 0], var_mf), (var_gpy[:, 0], var_mf) # TODO: The full covariance matrix prediction with SVGP in GPy may not be correct. Need further investigation. # noise_free, full_cov mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt, full_cov=True) infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.svgp_predict.diagonal_variance = False infr2.inference_algorithm.model.Y.factor.svgp_predict.noise_free = True res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] print(var_gpy.shape, var_mf.shape) assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:, :, 0], var_mf), (var_gpy[:, :, 0], var_mf) # noisy, full_cov mu_gpy, var_gpy = m_gpy.predict(Xt, full_cov=True) infr2 = TransferInference(ModulePredictionAlgorithm( m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64) infr2.inference_algorithm.model.Y.factor.svgp_predict.diagonal_variance = False infr2.inference_algorithm.model.Y.factor.svgp_predict.noise_free = False res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0] mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0] assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf) assert np.allclose(var_gpy[:, :, 0], var_mf), (var_gpy[:, :, 0], var_mf)