예제 #1
0
import mxnet as mx
import time
import gluoncv

from mxnet import nd, autograd
from mxnet import gluon
from mxnet.gluon import nn

inputShape = (1, 3, 224, 224)

from mxnet.gluon.model_zoo import vision

alexnet = vision.alexnet()
inception = vision.inception_v3()

resnet18v1 = vision.resnet18_v1()
resnet18v2 = vision.resnet18_v2()
squeezenet = vision.squeezenet1_0()
densenet = vision.densenet121()
mobilenet = vision.mobilenet0_5()

############### 그래프 ###############
import gluoncv
gluoncv.utils.viz.plot_network(resnet18v1, shape=inputShape)
#####################################
예제 #2
0
        return transformer(data.astype(np.float32)), label

    trainset = data.vision.datasets.ImageFolderDataset("./dataset/valid_train",
                                                       1, train_transform)
    validset = data.vision.datasets.ImageFolderDataset("./dataset/valid_test",
                                                       1, valid_transform)

    trainloader = data.DataLoader(trainset,
                                  batch_size,
                                  True,
                                  num_workers=8,
                                  pin_memory=True)
    validloader = data.DataLoader(validset, batch_size, False)

    # model
    mobilenet = vision.mobilenet0_5(pretrained=True, ctx=ctx).features
    clf = nn.Sequential()
    with clf.name_scope():
        clf.add(nn.Dense(4096, activation='relu'),
                nn.Dense(4096, activation='relu'),
                nn.Dense(1024, activation='relu'), nn.Dense(6))

    clf.collect_params().initialize(init=init.Xavier(), ctx=ctx)

    # scheduler + trainer
    if args.mask:
        steps_epochs = [150, 175]
    else:
        steps_epochs = [150]
    it_per_epoch = math.ceil(1243 / batch_size)
    steps_iterations = [s * it_per_epoch for s in steps_epochs]
예제 #3
0
import json

import matplotlib.pyplot as plt
import mxnet as mx
from mxnet import gluon, nd
from mxnet.gluon.model_zoo import vision
import numpy as np

ctx = mx.cpu()

densenet121 = vision.densenet121(pretrained=True, ctx=ctx)
mobileNet = vision.mobilenet0_5(pretrained=True, ctx=ctx)
resnet18 = vision.resnet18_v1(pretrained=True, ctx=ctx)

mx.test_utils.download(
    'https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/doc/tutorials/onnx/image_net_labels.json'
)
categories = np.array(json.load(open('image_net_labels.json', 'r')))

# filename = mx.test_utils.download('https://github.com/dmlc/web-data/blob/master/mxnet/doc/tutorials/onnx/images/dog.jpg?raw=true', fname='dog.jpg')
filename = 'scorp.jpg'

image = mx.image.imread(filename)
plt.imshow(image.asnumpy())
plt.show()

# Read the image: this will return a NDArray shaped as (image height, image width, 3), with the three channels in RGB order.
# Resize the shorter edge of the image 224.
# Crop, using a size of 224x224 from the center of the image.
# Shift the mean and standard deviation of our color channels to match the ones of the dataset the network has been trained on.
# Transpose the array from (Height, Width, 3) to (3, Height, Width).