def train(): net = plate_recognition_net(train=True) model = mx.model.FeedForward(symbol=net, ctx=mx.gpu() if list_gpus() else mx.cpu(), num_epoch=1, learning_rate=0.001, wd=0.00001, initializer=mx.init.Xavier(factor_type="in", magnitude=2.34), momentum=0.9) batch_size = 20 # data_train = PlateRecognitionIter(2000000, batch_size, 7, 30, 120) data_train = PlateRecognitionIter(5000000, batch_size, 7, 30, 120) data_test = PlateRecognitionIter(1000, batch_size, 7, 30, 120) import logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)-15s %(message)s') model.fit(X=data_train, eval_data=data_test, eval_metric=accuracy, batch_end_callback=mx.callback.Speedometer(batch_size, 50)) model.save("models/cnn-ocr")
def recognize_one(img_filename): img = cv2.imread(img_filename) img = cv2.resize(img, (120, 30)) img = np.swapaxes(img, 0, 2) img = np.swapaxes(img, 1, 2) batch_size = 1 _, arg_params, __ = mx.model.load_checkpoint("models/cnn-ocr", 1) data_shape = [("data", (batch_size, 3, 30, 120))] input_shapes = dict(data_shape) sym = plate_recognition_net(train=False) executor = sym.simple_bind(ctx=mx.gpu() if list_gpus() else mx.cpu(), **input_shapes) for key in executor.arg_dict.keys(): if key in arg_params: arg_params[key].copyto(executor.arg_dict[key]) executor.forward(is_train=True, data=mx.nd.array([img])) probs = executor.outputs[0].asnumpy() line = '' for i in range(probs.shape[0]): if i == 0: result = np.argmax(probs[i][0:31]) elif i == 1: result = np.argmax(probs[i][41:65]) + 41 else: result = np.argmax(probs[i][31:65]) + 31 line += chars[result] print('recognized as: ' + line)
def _get_nGPUs(self): # caution: if not using all the GPUs, please mannually set nGPUs nGPUs = len(test_utils.list_gpus()) # for CPU nGPUs = nGPUs if nGPUs > 0 else 1 return nGPUs
def _get_num_devices(self): # caution: if not using all the GPUs, please mannually set num_devices num_devices = len(test_utils.list_gpus()) # for CPU num_devices = num_devices if num_devices > 0 else 1 return num_devices
def try_gpu(): if len(test_utils.list_gpus()) > 0: return mx.gpu() else: return mx.cpu()
from mydataset import _test_data from mxnet.gluon.data.vision import transforms from mxnet.gluon.data import DataLoader from myNet import resnet18 from mxnet import cpu, gpu from mxnet import ndarray as nd from mxnet.test_utils import list_gpus import pandas as pd BATCH_SIZE = 1 MODEL_PATH = 'resnet18.params' if list_gpus(): CTX = gpu() else: CTX = cpu() transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]) ]) test_dataloader = DataLoader(_test_data.transform_first(transform_test), batch_size=BATCH_SIZE, shuffle=True, last_batch='keep') net = resnet18(10) net.load_parameters(MODEL_PATH, ctx=CTX) # net.initialize(ctx=CTX)