def __init__(self): model = get_model() criterion = get_loss optimizer = get_optimizer(model) super().__init__(model, criterion, optimizer) self.metric_meter['loss'] = meter.AverageValueMeter() self.metric_meter['acc'] = meter.AverageValueMeter()
def __init__(self): model = get_model(opt.num_classes) criterion = get_loss optimizer = get_optimizer(model) super().__init__(model=model, criterion=criterion, optimizer=optimizer) self.config += ('Crop size: ' + str(opt.crop_size) + '\n') self.best_metric = 0 for m in all_metrcis: self.metric_meter[m] = meter.AverageValueMeter()
def __init__(self, convert): self.convert = convert model = get_model(convert) criterion = get_loss optimizer = get_optimizer(model) super().__init__(model, criterion, optimizer) self.config += ('text: ' + opt.txt + '\n' + 'train text length: ' + str(opt.len) + '\n') self.config += ('predict text length: ' + str(opt.predict_len) + '\n') self.metric_meter['loss'] = meter.AverageValueMeter()
def __init__(self): faster_rcnn = get_model() optimizer = get_optimizer(faster_rcnn) super().__init__(faster_rcnn, optimizer=optimizer) self.rpn_sigma = opt.rpn_sigma self.roi_sigma = opt.roi_sigma # Target creator create gt_bbox gt_label etc as training targets. self.anchor_target_creator = AnchorTargetCreator() self.proposal_target_creator = ProposalTargetCreator() self.loc_normalize_mean = self.model.loc_normalize_mean self.loc_normalize_std = self.model.loc_normalize_std self.faster_rcnn_loc_loss = _faster_rcnn_loc_loss self.class_loss = nn.CrossEntropyLoss() # Indicators for training status. # self.rpn_cm = meter.ConfusionMeter(2) # self.roi_cm = meter.ConfusionMeter(2) for k in LossTuple._fields: self.metric_meter[k] = meter.AverageValueMeter()