def test_tf(img):
    img = tfs.Resize(256)(img)
    img, _ = tfs.CenterCrop(224)(img)
    normalize = tfs.Compose([
        tfs.ToTensor(),
        tfs.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    img = normalize(img)
    return img
예제 #2
0
def img_transforms(img, label, crop_size):
    img, label = random_crop(img, label, crop_size)
    img_tfs = tfs.Compose([
        tfs.ToTensor(),
        tfs.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    img = img_tfs(img)
    label = image2label(label)
    label = torch.from_numpy(label)
    return img, label
예제 #3
0
def pytorch_normalize(img):
    """Normalize input image in pytorch way.
    Use pytorch way to do normalize, taking from a numpy.ndarray.

    Args:
        img(~numpy.ndarray): Image to be normalized, which is a numpy.ndarray.

    Returns:
        An normalized torch.Tensor, CHW order and range from :math:`[0, 1]`.
    """
    img = torch.from_numpy(img) / 255.
    normalize = tfs.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    img = normalize(img)
    return img.numpy()
from config import opt
from mxtorch import meter
from mxtorch import transforms as tfs
from mxtorch.trainer import *
from mxtorch.vision import model_zoo
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from tqdm import tqdm

train_tf = tfs.Compose([
    tfs.RandomResizedCrop(224),
    tfs.RandomHorizontalFlip(),
    tfs.ToTensor(),
    tfs.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])


def test_tf(img):
    img = tfs.Resize(256)(img)
    img, _ = tfs.CenterCrop(224)(img)
    normalize = tfs.Compose([
        tfs.ToTensor(),
        tfs.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    img = normalize(img)
    return img


def get_train_data():