예제 #1
0
    def __call__(self, inputs, state, scope=None):
        """

        :param inputs: [N, d + JQ + JQ * d]
        :param state: [N, d]
        :param scope:
        :return:
        """
        with tf.variable_scope(scope or self.__class__.__name__):
            c_prev, h_prev = state
            x = tf.slice(inputs, [0, 0], [-1, self._input_size])
            q_mask = tf.slice(inputs, [0, self._input_size],
                              [-1, self._q_len])  # [N, JQ]
            qs = tf.slice(inputs, [0, self._input_size + self._q_len],
                          [-1, -1])
            qs = tf.reshape(qs,
                            [-1, self._q_len, self._input_size])  # [N, JQ, d]
            x_tiled = tf.tile(tf.expand_dims(x, 1),
                              [1, self._q_len, 1])  # [N, JQ, d]
            h_prev_tiled = tf.tile(tf.expand_dims(h_prev, 1),
                                   [1, self._q_len, 1])  # [N, JQ, d]
            f = tf.tanh(
                linear([qs, x_tiled, h_prev_tiled],
                       self._input_size,
                       True,
                       scope='f'))  # [N, JQ, d]
            a = tf.nn.softmax(
                exp_mask(linear(f, 1, True, squeeze=True, scope='a'),
                         q_mask))  # [N, JQ]
            q = tf.reduce_sum(qs * tf.expand_dims(a, -1), 1)
            z = tf.concat([x, q], 1)  # [N, 2d]
            return self._cell(z, state)
예제 #2
0
def linear_logits(args, bias, bias_start=0.0, scope=None, mask=None, wd=0.0, input_keep_prob=1.0, is_train=None):
    with tf.variable_scope(scope or "Linear_Logits"):
        # args = [N, M, JX, JQ, 6d]
        logits = linear(args, 1, bias, bias_start=bias_start, squeeze=True, scope='first',
                        wd=wd, input_keep_prob=input_keep_prob, is_train=is_train)
        if mask is not None:
            logits = exp_mask(logits, mask)
        return logits
예제 #3
0
def double_linear_logits(args, size, bias, bias_start=0.0, scope=None, mask=None, wd=0.0, input_keep_prob=1.0, is_train=None):
    with tf.variable_scope(scope or "Double_Linear_Logits"):
        first = tf.tanh(linear(args, size, bias, bias_start=bias_start, scope='first',
                               wd=wd, input_keep_prob=input_keep_prob, is_train=is_train))
        second = linear(first, 1, bias, bias_start=bias_start, squeeze=True, scope='second',
                        wd=wd, input_keep_prob=input_keep_prob, is_train=is_train)
        if mask is not None:
            second = exp_mask(second, mask)
        return second
예제 #4
0
def softmax(logits, mask=None, scope=None):
    with tf.name_scope(scope or "Softmax"):
        if mask is not None:
            logits = exp_mask(logits, mask)
        flat_logits = flatten(logits, 1)
        flat_out = tf.nn.softmax(flat_logits)
        out = reconstruct(flat_out, logits, 1)

        return out
예제 #5
0
def sum_logits(args, mask=None, name=None):
    with tf.name_scope(name or "sum_logits"):
        if args is None or (nest.is_sequence(args) and not args):
            raise ValueError("`args` must be specified")
        if not nest.is_sequence(args):
            args = [args]
        rank = len(args[0].get_shape())
        logits = sum(tf.reduce_sum(arg, rank-1) for arg in args)
        if mask is not None:
            logits = exp_mask(logits, mask)
        return logits
예제 #6
0
 def __call__(self, inputs, state, scope=None):
     """
     :param inputs: [N*B, I + B]
     :param state: [N*B, d]
     :param scope:
     :return: [N*B, d]
     """
     with tf.variable_scope(scope or self.__class__.__name__):
         d = self.state_size
         x = tf.slice(inputs, [0, 0], [-1, self._input_size])  # [N*B, I]
         mask = tf.slice(inputs, [0, self._input_size],
                         [-1, -1])  # [N*B, B]
         B = tf.shape(mask)[1]
         prev_state = tf.expand_dims(tf.reshape(state, [-1, B, d]),
                                     1)  # [N, B, d] -> [N, 1, B, d]
         mask = tf.tile(tf.expand_dims(tf.reshape(mask, [-1, B, B]), -1),
                        [1, 1, 1, d])  # [N, B, B, d]
         # prev_state = self._reduce_func(tf.tile(prev_state, [1, B, 1, 1]), 2)
         prev_state = self._reduce_func(exp_mask(prev_state, mask),
                                        2)  # [N, B, d]
         prev_state = tf.reshape(prev_state, [-1, d])  # [N*B, d]
         return self._cell(x, prev_state)