from mpl_toolkits.basemap import Basemap from mpl_toolkits.basemap import cm, maskoceans #from pygeode.plot import plot_v1 as pl #from pygeode.plot import basemap as bm ## settings nax = 2 # number of panels ndom = 2 sf = dict(dpi=150) # print properties folder = '/home/me/Research/Dynamical Downscaling/figures/' # figure directory if __name__ == '__main__': ## read data data = openWRF('ctrl-1',[1982],range(11,12)) print data[ndom-1] ## setup projection f = pyl.figure(facecolor='white', figsize = (6.25,4.25)) ax = [] for n in xrange(nax): ax.append(f.add_subplot(1,2,n+1)) f.subplots_adjust(bottom=0.12, left=0.06, right=.97, top=.94, hspace=0.05, wspace=0.05) # hspace, wspace # setup lambert conformal basemap. # lat_1 is first standard parallel. # lat_2 is second standard parallel (defaults to lat_1). # lon_0,lat_0 is central point. # rsphere=(6378137.00,6356752.3142) specifies WGS4 ellipsoid # area_thresh=1000 means don't plot coastline features less # than 1000 km^2 in area.
#subplots = (1,2) #figsize = (6.25,4.25) subplot = (2,2) figsize = (6.25,6.25) figtitle = 'Annual Average Precipitation [mm/day]' axtitles = ['WRF Control','WRF Grell-3','CFSR Climatology', 'NARR Climatology'] margins = dict(bottom=0.025, left=0.065, right=.885, top=.925, hspace=0.05, wspace=0.05) caxpos = [0.91, 0.05, 0.03, 0.9] sf = dict(dpi=150) # print properties folder = '/home/me/Research/Dynamical Downscaling/figures/' # figure directory if __name__ == '__main__': # load WRF data domains = [1]; ndom = len(domains) # WRF domain way2, = openWRF(exp='2way-ctrl',years=[1983],months=[3], domains=domains) grell3, = openWRF(exp='grell3-ctrl',years=[1981],months=[2], domains=domains) ctrl1, = openWRF(exp='ctrl-1',years=[1985],months=[5], domains=domains) ensA, = openWRF(exp='ens-A-ctrl',years=[1985],months=[5], domains=domains) WRF = (ctrl1, grell3, ) # load CFSR data CFSR = openCFSRclim() # load NARR data NARR = openNARRclim() # just load whole climatology # print NARR ## compute data data = []; lon = []; lat=[] # list of data and coordinate fields to be plotted # compute average WRF precip for exp in WRF: nrec = exp.time.values[-1]+1
from mpl_toolkits.basemap import Basemap from mpl_toolkits.basemap import cm, maskoceans #from pygeode.plot import plot_v1 as pl #from pygeode.plot import basemap as bm ## settings nax = 2 # number of panels ndom = 2 sf = dict(dpi=150) # print properties folder = '/home/me/Research/Dynamical Downscaling/figures/' # figure directory if __name__ == '__main__': ## read data data = openWRF('ctrl-1', [1982], range(11, 12)) print data[ndom - 1] ## setup projection f = pyl.figure(facecolor='white', figsize=(6.25, 4.25)) ax = [] for n in xrange(nax): ax.append(f.add_subplot(1, 2, n + 1)) f.subplots_adjust(bottom=0.12, left=0.06, right=.97, top=.94, hspace=0.05, wspace=0.05) # hspace, wspace # setup lambert conformal basemap. # lat_1 is first standard parallel.
from mpl_toolkits.basemap import Basemap from mpl_toolkits.basemap import cm, maskoceans #from pygeode.plot import plot_v1 as pl #from pygeode.plot import basemap as bm ## settings nax = 2 # number of panels ndom = 2 sf = dict(dpi=150) # print properties folder = '/home/me/Research/Dynamical Downscaling/figures/' # figure directory if __name__ == '__main__': ## read data data = openWRF('ctrl-1',[1982],list(range(11,12))) print(data[ndom-1]) ## compute data precip = []; ndays = [] for n in range(ndom): nrec = data[n].time.values[-1]+1 ndays = data[n].xtime(time=nrec-1).get() /24/60 # xtime is in minutes, need days dailyrain = data[n].rain(time=nrec-1).get() / ndays # ndays = ( data[n].xtime(time=nrec-1).get() - data[n].xtime(time=0).get() )/24/60 # xtime is in minutes, need days # dailyrain = ( data[n].rain(time=nrec-1).get() - data[n].rain(time=0).get() ) / ndays precip.append(dailyrain.squeeze()) ## setup projection f = pyl.figure(facecolor='white', figsize = (6.25,4.25)) ax = [] for n in range(nax):
margins = dict(bottom=0.025, left=0.065, right=.885, top=.925, hspace=0.05, wspace=0.05) caxpos = [0.91, 0.05, 0.03, 0.9] sf = dict(dpi=150) # print properties folder = '/home/me/Research/Dynamical Downscaling/figures/' # figure directory if __name__ == '__main__': # load WRF data domains = [1] ndom = len(domains) # WRF domain way2, = openWRF(exp='2way-ctrl', years=[1983], months=[3], domains=domains) grell3, = openWRF(exp='grell3-ctrl', years=[1981], months=[2], domains=domains) ctrl1, = openWRF(exp='ctrl-1', years=[1985], months=[5], domains=domains) ensA, = openWRF(exp='ens-A-ctrl', years=[1985], months=[5], domains=domains) WRF = ( ctrl1, grell3, ) # load CFSR data CFSR = openCFSRclim()
## figure settings #subplot = (2,2) #figsize = (6.25,6.25) figtitle = 'Annual Average Precipitation [mm/day]' axtitles = ['WRF Ctrl-1 (GPC)', 'WRF Ctrl-1 (TCS)'] sf = dict(dpi=150) # print properties folder = '/home/me/Research/Dynamical Downscaling/figures/' # figure directory if __name__ == '__main__': # load WRF data domains = [2]; ndom = len(domains) # WRF domain # way2, = openWRF(exp='2way-ctrl',years=[1982],months=[9], domains=domains) # grell3, = openWRF(exp='grell3-ctrl',years=[1980],months=[8], domains=domains) # ctrl1, = openWRF(exp='ctrl-1',years=[1984],months=[7], domains=domains) ctrl1, = openWRF(exp='ctrl-1',years=[1980],months=[12], domains=domains) ctrl2, = openWRF(exp='ctrl-2',years=[1980],months=[12], domains=domains) WRF = (ctrl1, ctrl2) # load NARR data NARR = openNARR() # just load whole climatology print NARR ## compute data data = []; lon = []; lat=[] # list of data and coordinate fields to be plotted # compute average WRF precip for exp in WRF: nrec = exp.time.values[-1]+1 ndays = exp.xtime(time=nrec-1).get() /24/60 # xtime is in minutes, need days dailyrain = exp.rain(time=nrec-1).get().squeeze() / ndays data.append(dailyrain) lon.append(exp.lon.get()); lat.append(exp.lat.get())
#subplots = (1,2) #figsize = (6.25,4.25) subplot = (2,2) figsize = (6.25,6.25) figtitle = 'Annual Average Precipitation [mm/day]' axtitles = ['WRF 2-way nested','WRF Grell-3','WRF Control', 'NARR Climatology'] margins = dict(bottom=0.025, left=0.065, right=.885, top=.925, hspace=0.05, wspace=0.05) caxpos = [0.91, 0.05, 0.03, 0.9] sf = dict(dpi=150) # print properties folder = '/home/me/Research/Dynamical Downscaling/figures/' # figure directory if __name__ == '__main__': # load WRF data domains = [1]; ndom = len(domains) # WRF domain way2, = openWRF(exp='2way-ctrl',years=[1982],months=[9], domains=domains) grell3, = openWRF(exp='grell3-ctrl',years=[1980],months=[8], domains=domains) ctrl1, = openWRF(exp='ctrl-1',years=[1984],months=[7], domains=domains) WRF = (way2, grell3, ctrl1) # load NARR data NARR = openNARR() # just load whole climatology print NARR ## compute data data = []; lon = []; lat=[] # list of data and coordinate fields to be plotted # compute average WRF precip for exp in WRF: nrec = exp.time.values[-1]+1 ndays = exp.xtime(time=nrec-1).get() /24/60 # xtime is in minutes, need days dailyrain = exp.rain(time=nrec-1).get().squeeze() / ndays data.append(dailyrain)
#subplot = (2,2) #figsize = (6.25,6.25) figtitle = 'Annual Average Precipitation [mm/day]' axtitles = ['WRF Ctrl-1 (GPC)', 'WRF Ctrl-1 (TCS)'] sf = dict(dpi=150) # print properties folder = '/home/me/Research/Dynamical Downscaling/figures/' # figure directory if __name__ == '__main__': # load WRF data domains = [2] ndom = len(domains) # WRF domain # way2, = openWRF(exp='2way-ctrl',years=[1982],months=[9], domains=domains) # grell3, = openWRF(exp='grell3-ctrl',years=[1980],months=[8], domains=domains) # ctrl1, = openWRF(exp='ctrl-1',years=[1984],months=[7], domains=domains) ctrl1, = openWRF(exp='ctrl-1', years=[1980], months=[12], domains=domains) ctrl2, = openWRF(exp='ctrl-2', years=[1980], months=[12], domains=domains) WRF = (ctrl1, ctrl2) # load NARR data NARR = openNARR() # just load whole climatology print NARR ## compute data data = [] lon = [] lat = [] # list of data and coordinate fields to be plotted # compute average WRF precip for exp in WRF: nrec = exp.time.values[-1] + 1 ndays = exp.xtime(time=nrec - 1).get() / 24 / 60 # xtime is in minutes, need days
margins = dict(bottom=0.025, left=0.065, right=.885, top=.925, hspace=0.05, wspace=0.05) caxpos = [0.91, 0.05, 0.03, 0.9] sf = dict(dpi=150) # print properties folder = '/home/me/Research/Dynamical Downscaling/figures/' # figure directory if __name__ == '__main__': # load WRF data domains = [1] ndom = len(domains) # WRF domain way2, = openWRF(exp='2way-ctrl', years=[1982], months=[9], domains=domains) grell3, = openWRF(exp='grell3-ctrl', years=[1980], months=[8], domains=domains) ctrl1, = openWRF(exp='ctrl-1', years=[1984], months=[7], domains=domains) WRF = (way2, grell3, ctrl1) # load NARR data NARR = openNARR() # just load whole climatology print NARR ## compute data data = [] lon = [] lat = [] # list of data and coordinate fields to be plotted # compute average WRF precip
from myPlots.plots import surfacePlot from mpl_toolkits.basemap import Basemap from mpl_toolkits.basemap import cm, maskoceans #from pygeode.plot import plot_v1 as pl #from pygeode.plot import basemap as bm ## settings sf = dict(dpi=150) # print properties folder = '/home/me/Research/Dynamical Downscaling/figures/' # figure directory if __name__ == '__main__': ## read data data1, data2 = openWRF('ctrl-1',[1981],[1,2,12]) print data1 ## compute data # precip1 = data1.rain(time=) # precip2 = ## setup projection f = pyl.figure(facecolor='white', figsize = (6.25,4.25)) ax = f.add_subplot(1,1,1) f.subplots_adjust(bottom=0.05, left=0.05, right=.93, top=.93) # hspace, wspace # setup lambert conformal basemap. # lat_1 is first standard parallel. # lat_2 is second standard parallel (defaults to lat_1). # lon_0,lat_0 is central point. # rsphere=(6378137.00,6356752.3142) specifies WGS4 ellipsoid # area_thresh=1000 means don't plot coastline features less