def repeat_main(): repeat_num = 1 # パラメータモジュール # for lm in ["LDA"]: for lm in ["SVM", "LDA", "ANN"]: for ts in ["HBX", "HBX3", "HBX1"]: for re in ["none"]: # for re in ["none", "bootstrap", "smote"]: for fe in ["SSSM", "SMSK", "SLICE"]: if re in ["bootstrap", "smote"]: for rs in [20, 30, 40]: for nf in [10, None]: param = myParameter.myParameter() # 乱数モジュール param.RAND = random.Random() param.LEARNING_METHOD = lm param.TARGET_SIGNAL = ts param.RESAMPLING_METHOD = re param.RESAMPLING_SIZE = rs param.FEATURE_TYPE = fe param.N_FOLD = nf fp = open("memo.txt", 'a') fp.write(",".join([str(mm) for mm in [lm, ts, re, rs, fe, nf]])) fp.write("\n") fp.close() # 実行 _addfilename = lm+ts+re+str(rs)+fe+str(nf) main(param, addfilename = _addfilename) elif re == "none": rs = 0 for nf in [10, None]: param = myParameter.myParameter() # 乱数モジュール param.RAND = random.Random() param.LEARNING_METHOD = lm param.TARGET_SIGNAL = ts param.RESAMPLING_METHOD = re param.RESAMPLING_SIZE = rs param.FEATURE_TYPE = fe param.N_FOLD = nf _addfilename = lm+ts+re+str(rs)+fe+str(nf) fp = open("memo.txt", 'a') fp.write(",".join([str(mm) for mm in [lm, ts, re, rs, fe, nf]])) fp.write("\n") fp.close() # 実行 main(param, addfilename = _addfilename)
def repeat_main(): repeat_num = 1 # パラメータモジュール # for lm in ["LDA"]: for lm in ["SVM", "LDA", "ANN"]: for ts in ["HBX", "HBX3", "HBX1"]: for re in ["none"]: # for re in ["none", "bootstrap", "smote"]: for fe in ["SSSM", "SMSK", "SLICE"]: if re in ["bootstrap", "smote"]: for rs in [20, 30, 40]: for nf in [10, None]: param = myParameter.myParameter() # 乱数モジュール param.RAND = random.Random() param.LEARNING_METHOD = lm param.TARGET_SIGNAL = ts param.RESAMPLING_METHOD = re param.RESAMPLING_SIZE = rs param.FEATURE_TYPE = fe param.N_FOLD = nf fp = open("memo.txt", 'a') fp.write(",".join([ str(mm) for mm in [lm, ts, re, rs, fe, nf] ])) fp.write("\n") fp.close() # 実行 _addfilename = lm + ts + re + str( rs) + fe + str(nf) main(param, addfilename=_addfilename) elif re == "none": rs = 0 for nf in [10, None]: param = myParameter.myParameter() # 乱数モジュール param.RAND = random.Random() param.LEARNING_METHOD = lm param.TARGET_SIGNAL = ts param.RESAMPLING_METHOD = re param.RESAMPLING_SIZE = rs param.FEATURE_TYPE = fe param.N_FOLD = nf _addfilename = lm + ts + re + str(rs) + fe + str( nf) fp = open("memo.txt", 'a') fp.write(",".join( [str(mm) for mm in [lm, ts, re, rs, fe, nf]])) fp.write("\n") fp.close() # 実行 main(param, addfilename=_addfilename)
""" トライアルの開始時間を0.1[s]単位で抽出 @param target_file: 対象となるPresentationログファイル @param param: パラメータモジュール @return: シナリオ開始から各タスクの開始時間のリスト 0.1[s]単位 動作確認済 """ if param.FS != 10.0: raise NameError("This script can processing 10.0 Hz data.") # データの読み出しとヘッダ行を飛ばす cr = csv.reader(open(target_file, 'Ur'), delimiter="\t") for i in range(5): cr.next() # データ取り出し trial_start = [] for r in cr: if len(r) > 0: _time = int(r[3]) trial_start.append(int(round(_time / 1000.0, 0))) else: break return trial_start if __name__ == "__main__": import myParameter param = myParameter.myParameter() target_file = "/Users/misato/Documents/eclipse/workspace/TwoChannelNIRS/dataset/presentation_log/ysakaguchi/session1.log" print import_log(target_file, param)
@param param: パラメータモジュール @return: シナリオ開始から各タスクの開始時間のリスト 0.1[s]単位 動作確認済 """ if param.FS != 10.0: raise NameError("This script can processing 10.0 Hz data.") # データの読み出しとヘッダ行を飛ばす cr = csv.reader(open(target_file, "Ur"), delimiter="\t") for i in range(5): cr.next() # データ取り出し trial_start = [] for r in cr: if len(r) > 0: _time = int(r[3]) trial_start.append(int(round(_time / 1000.0, 0))) else: break return trial_start if __name__ == "__main__": import myParameter param = myParameter.myParameter() target_file = ( "/Users/misato/Documents/eclipse/workspace/TwoChannelNIRS/dataset/presentation_log/ysakaguchi/session1.log" ) print import_log(target_file, param)