def __init__(self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, gate_sent_encoder: Seq2SeqEncoder, gate_self_attention_layer: Seq2SeqEncoder, bert_projection: FeedForward, span_gate: Seq2SeqEncoder, dropout: float = 0.2, output_att_scores: bool = True, regularizer: Optional[RegularizerApplicator] = None) -> None: super(PTNChainBidirectionalAttentionFlow, self).__init__(vocab, regularizer) self._text_field_embedder = text_field_embedder self._dropout = torch.nn.Dropout(p=dropout) self._output_att_scores = output_att_scores self._span_gate = span_gate self._bert_projection = bert_projection #self._gate_sent_encoder = gate_sent_encoder self._gate_self_attention_layer = gate_self_attention_layer self._gate_sent_encoder = None self._gate_self_attention_layer = None self._f1_metrics = AttF1Measure(0.5, top_k=False) self._loss_trackers = {'loss': Average(), 'rl_loss': Average()} self.evd_sup_acc_metric = ChainAccuracy() self.evd_ans_metric = Average() self.evd_beam_ans_metric = Average()
class PTNChainBidirectionalAttentionFlow(Model): def __init__(self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, gate_sent_encoder: Seq2SeqEncoder, gate_self_attention_layer: Seq2SeqEncoder, bert_projection: FeedForward, span_gate: Seq2SeqEncoder, dropout: float = 0.2, output_att_scores: bool = True, regularizer: Optional[RegularizerApplicator] = None) -> None: super(PTNChainBidirectionalAttentionFlow, self).__init__(vocab, regularizer) self._text_field_embedder = text_field_embedder self._dropout = torch.nn.Dropout(p=dropout) self._output_att_scores = output_att_scores self._span_gate = span_gate self._bert_projection = bert_projection #self._gate_sent_encoder = gate_sent_encoder self._gate_self_attention_layer = gate_self_attention_layer self._gate_sent_encoder = None self._gate_self_attention_layer = None self._f1_metrics = AttF1Measure(0.5, top_k=False) self._loss_trackers = {'loss': Average(), 'rl_loss': Average()} self.evd_sup_acc_metric = ChainAccuracy() self.evd_ans_metric = Average() self.evd_beam_ans_metric = Average() def forward(self, # type: ignore question: Dict[str, torch.LongTensor], passage: Dict[str, torch.LongTensor], span_start: torch.IntTensor = None, span_end: torch.IntTensor = None, sentence_spans: torch.IntTensor = None, sent_labels: torch.IntTensor = None, evd_chain_labels: torch.IntTensor = None, q_type: torch.IntTensor = None, transition_mask: torch.IntTensor = None, start_transition_mask: torch.Tensor = None, metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]: # In this model, we only take the first chain in ``evd_chain_labels`` for supervision evd_chain_labels = evd_chain_labels[:, 0] if not evd_chain_labels is None else None # there may be some instances that we can't find any evd chain for training # In that case, use the mask to ignore those instances evd_instance_mask = (evd_chain_labels[:, 0] != 0).float() if not evd_chain_labels is None else None #print('passage size:', passage['bert'].shape) # bert embedding for answer prediction # shape: [batch_size, max_q_len, emb_size] print('\nBert wordpiece size:', passage['bert'].shape) embedded_question = self._text_field_embedder(question) # shape: [batch_size, num_sent, max_sent_len+q_len, embedding_dim] embedded_passage = self._text_field_embedder(passage, ) # print('\npassage size:', embedded_passage.shape) #embedded_question = self._bert_projection(embedded_question) #embedded_passage = self._bert_projection(embedded_passage) #print('size embedded_passage:', embedded_passage.shape) # mask ques_mask = util.get_text_field_mask(question, num_wrapping_dims=0).float() context_mask = util.get_text_field_mask(passage, num_wrapping_dims=1).float() #print(context_mask.shape) # chain prediction # Shape(all_predictions): (batch_size, num_decoding_steps) # Shape(all_logprobs): (batch_size, num_decoding_steps) # Shape(seq_logprobs): (batch_size,) # Shape(gate): (batch_size * num_spans, 1) # Shape(gate_probs): (batch_size * num_spans, 1) # Shape(gate_mask): (batch_size, num_spans) # Shape(g_att_score): (batch_size, num_heads, num_spans, num_spans) # Shape(orders): (batch_size, K, num_spans) all_predictions, \ all_logprobs, \ seq_logprobs, \ gate, \ gate_probs, \ gate_mask, \ g_att_score, \ orders = self._span_gate(embedded_passage, context_mask, embedded_question, ques_mask, evd_chain_labels, self._gate_self_attention_layer, self._gate_sent_encoder, transition_mask, start_transition_mask) batch_size, num_spans, max_batch_span_width = context_mask.size() output_dict = { "pred_sent_labels": gate.squeeze(1).view(batch_size, num_spans), #[B, num_span] "gate_probs": gate_probs.squeeze(1).view(batch_size, num_spans), #[B, num_span] "pred_sent_orders": orders, #[B, K, num_span] } if self._output_att_scores: if not g_att_score is None: output_dict['evd_self_attention_score'] = g_att_score # compute evd rl training metric, rewards, and loss print("sent label:") for b_label in np.array(sent_labels.cpu()): b_label = b_label == 1 indices = np.arange(len(b_label)) print(indices[b_label] + 1) evd_TP, evd_NP, evd_NT = self._f1_metrics(gate.squeeze(1).view(batch_size, num_spans), sent_labels, mask=gate_mask, instance_mask=evd_instance_mask if self.training else None, sum=False) # print("TP:", evd_TP) # print("NP:", evd_NP) # print("NT:", evd_NT) evd_ps = np.array(evd_TP) / (np.array(evd_NP) + 1e-13) evd_rs = np.array(evd_TP) / (np.array(evd_NT) + 1e-13) evd_f1s = 2. * ((evd_ps * evd_rs) / (evd_ps + evd_rs + 1e-13)) predict_mask = get_evd_prediction_mask(all_predictions.unsqueeze(1), eos_idx=0)[0] gold_mask = get_evd_prediction_mask(evd_chain_labels, eos_idx=0)[0] # default to take multiple predicted chains, so unsqueeze dim 1 self.evd_sup_acc_metric(predictions=all_predictions.unsqueeze(1), gold_labels=evd_chain_labels, predict_mask=predict_mask, gold_mask=gold_mask, instance_mask=evd_instance_mask) print("gold chain:", evd_chain_labels) predict_mask = predict_mask.float().squeeze(1) rl_loss = -torch.mean(torch.sum(all_logprobs * predict_mask * evd_instance_mask[:, None], dim=1)) # torch.cuda.empty_cache() # Compute the EM and F1 on SQuAD and add the tokenized input to the output. # Compute before loss for rl if metadata is not None: output_dict['answer_texts'] = [] question_tokens = [] passage_tokens = [] #token_spans_sp = [] #token_spans_sent = [] sent_labels_list = [] evd_possible_chains = [] ans_sent_idxs = [] pred_chains_include_ans = [] beam_pred_chains_include_ans = [] ids = [] for i in range(batch_size): question_tokens.append(metadata[i]['question_tokens']) passage_tokens.append(metadata[i]['passage_sent_tokens']) #token_spans_sent.append(metadata[i]['token_spans_sent']) sent_labels_list.append(metadata[i]['sent_labels']) ids.append(metadata[i]['_id']) passage_str = metadata[i]['original_passage'] #offsets = metadata[i]['token_offsets'] answer_texts = metadata[i].get('answer_texts', []) output_dict['answer_texts'].append(answer_texts) # shift sentence indice back evd_possible_chains.append([s_idx-1 for s_idx in metadata[i]['evd_possible_chains'][0] if s_idx > 0]) ans_sent_idxs.append([s_idx-1 for s_idx in metadata[i]['ans_sent_idxs']]) print("ans_sent_idxs:", metadata[i]['ans_sent_idxs']) if len(metadata[i]['ans_sent_idxs']) > 0: pred_sent_orders = orders[i].detach().cpu().numpy() if any([pred_sent_orders[0][s_idx-1] >= 0 for s_idx in metadata[i]['ans_sent_idxs']]): self.evd_ans_metric(1) pred_chains_include_ans.append(1) else: self.evd_ans_metric(0) pred_chains_include_ans.append(0) if any([any([pred_sent_orders[beam][s_idx-1] >= 0 for s_idx in metadata[i]['ans_sent_idxs']]) for beam in range(len(pred_sent_orders))]): self.evd_beam_ans_metric(1) beam_pred_chains_include_ans.append(1) else: self.evd_beam_ans_metric(0) beam_pred_chains_include_ans.append(0) output_dict['question_tokens'] = question_tokens output_dict['passage_sent_tokens'] = passage_tokens #output_dict['token_spans_sp'] = token_spans_sp #output_dict['token_spans_sent'] = token_spans_sent output_dict['sent_labels'] = sent_labels_list output_dict['evd_possible_chains'] = evd_possible_chains output_dict['ans_sent_idxs'] = ans_sent_idxs output_dict['pred_chains_include_ans'] = pred_chains_include_ans output_dict['beam_pred_chains_include_ans'] = beam_pred_chains_include_ans output_dict['_id'] = ids # Compute the loss for training. if evd_chain_labels is not None: try: loss = rl_loss self._loss_trackers['loss'](loss) self._loss_trackers['rl_loss'](rl_loss) output_dict["loss"] = loss except RuntimeError: print('\n meta_data:', metadata) print(output_dict['_id']) return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: p, r, evidence_f1_socre = self._f1_metrics.get_metric(reset) ans_in_evd = self.evd_ans_metric.get_metric(reset) beam_ans_in_evd = self.evd_beam_ans_metric.get_metric(reset) metrics = { 'evd_p': p, 'evd_r': r, 'evd_f1': evidence_f1_socre, 'ans_in_evd': ans_in_evd, 'beam_ans_in_evd': beam_ans_in_evd, } for name, tracker in self._loss_trackers.items(): metrics[name] = tracker.get_metric(reset).item() evd_sup_acc = self.evd_sup_acc_metric.get_metric(reset) metrics['evd_sup_acc'] = evd_sup_acc return metrics @staticmethod def get_best_span(span_start_logits: torch.Tensor, span_end_logits: torch.Tensor) -> torch.Tensor: if span_start_logits.dim() != 2 or span_end_logits.dim() != 2: raise ValueError("Input shapes must be (batch_size, passage_length)") batch_size, passage_length = span_start_logits.size() max_span_log_prob = [-1e20] * batch_size span_start_argmax = [0] * batch_size best_word_span = span_start_logits.new_zeros((batch_size, 2), dtype=torch.long) span_start_logits = span_start_logits.detach().cpu().numpy() span_end_logits = span_end_logits.detach().cpu().numpy() for b in range(batch_size): # pylint: disable=invalid-name for j in range(passage_length): val1 = span_start_logits[b, span_start_argmax[b]] if val1 < span_start_logits[b, j]: span_start_argmax[b] = j val1 = span_start_logits[b, j] val2 = span_end_logits[b, j] if val1 + val2 > max_span_log_prob[b]: best_word_span[b, 0] = span_start_argmax[b] best_word_span[b, 1] = j max_span_log_prob[b] = val1 + val2 return best_word_span
class FineTuneRLBidirectionalAttentionFlow(Model): def __init__(self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, phrase_layer: Seq2SeqEncoder, phrase_layer_sp: Seq2SeqEncoder, span_start_encoder: Seq2SeqEncoder, span_end_encoder: Seq2SeqEncoder, self_attention_layer: Seq2SeqEncoder, gate_sent_encoder: Seq2SeqEncoder, gate_self_attention_layer: Seq2SeqEncoder, type_encoder: Seq2SeqEncoder, modeling_layer: Seq2SeqEncoder, modeling_layer_sp: Seq2SeqEncoder, span_gate: Seq2SeqEncoder, dropout: float = 0.2, output_att_scores: bool = True, weights_file: str = None, ft_reward: str = "ans", regularizer: Optional[RegularizerApplicator] = None) -> None: super(FineTuneRLBidirectionalAttentionFlow, self).__init__(vocab, regularizer) self._text_field_embedder = text_field_embedder self._phrase_layer = phrase_layer self._phrase_layer_sp = phrase_layer_sp self._dropout = torch.nn.Dropout(p=dropout) self._modeling_layer = modeling_layer self._modeling_layer_sp = modeling_layer_sp self._span_start_encoder = span_start_encoder self._span_end_encoder = span_end_encoder self._type_encoder = type_encoder self._self_attention_layer = self_attention_layer self._output_att_scores = output_att_scores self._ft_reward = ft_reward.split('+') encoding_dim = span_start_encoder.get_output_dim() self._span_gate = span_gate self.qc_att = BiAttention(encoding_dim, 0.0) self.qc_att_sp = BiAttention(encoding_dim, dropout) self._gate_sent_encoder = gate_sent_encoder self._gate_self_attention_layer = gate_self_attention_layer self.linear_start = nn.Linear(encoding_dim, 1) self.linear_end = nn.Linear(encoding_dim, 1) self.linear_type = nn.Linear(encoding_dim * 3, 3) self._squad_metrics = SquadEmAndF1_RT() self._f1_metrics = AttF1Measure(0.5, top_k=False) self._loss_trackers = {'loss': Average(), 'rl_loss': Average()} if self._span_gate.evd_decoder._train_helper_type == 'teacher_forcing': raise ValueError("train_helper should not be teacher forcing during fine tune!") self.evd_sup_acc_metric = ChainAccuracy() self.evd_ans_metric = Average() self.evd_beam_ans_metric = Average() self.evd_beam2_ans_metric = Average() # load the weights if weights_file: model_state = torch.load(weights_file, map_location=util.device_mapping(0)) self.load_state_dict(model_state) for p in self._text_field_embedder.parameters(): p.requires_grad = False def forward(self, # type: ignore question: Dict[str, torch.LongTensor], passage: Dict[str, torch.LongTensor], span_start: torch.IntTensor = None, span_end: torch.IntTensor = None, sentence_spans: torch.IntTensor = None, sent_labels: torch.IntTensor = None, evd_chain_labels: torch.IntTensor = None, q_type: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]: # In this model, we only take the first chain in ``evd_chain_labels`` for supervision evd_chain_labels = evd_chain_labels[:, 0] # there may be some instances that we can't find any evd chain for training # In that case, use the mask to ignore those instances evd_instance_mask = (evd_chain_labels[:, 0] != 0).float() if not evd_chain_labels is None else None # word + char embedding embedded_question = self._text_field_embedder(question) embedded_passage = self._text_field_embedder(passage) # mask ques_mask = util.get_text_field_mask(question).float() context_mask = util.get_text_field_mask(passage).float() # BiDAF for answer prediction (no dropout since the answer f1 is used as the reward) ques_output = self._phrase_layer(embedded_question, ques_mask) context_output = self._phrase_layer(embedded_passage, context_mask) modeled_passage, _, qc_score = self.qc_att(context_output, ques_output, ques_mask) modeled_passage = self._modeling_layer(modeled_passage, context_mask) # BiDAF for chain prediction ques_output_sp = self._dropout(self._phrase_layer_sp(embedded_question, ques_mask)) context_output_sp = self._dropout(self._phrase_layer_sp(embedded_passage, context_mask)) modeled_passage_sp, _, qc_score_sp = self.qc_att_sp(context_output_sp, ques_output_sp, ques_mask) modeled_passage_sp = self._modeling_layer_sp(modeled_passage_sp, context_mask) # chain prediciton # Shape(spans_rep): (batch_size * num_spans, max_batch_span_width, embedding_dim) # Shape(spans_mask): (batch_size, num_spans, max_batch_span_width) spans_rep_sp, spans_mask = convert_sequence_to_spans(modeled_passage_sp, sentence_spans) spans_rep, _ = convert_sequence_to_spans(modeled_passage, sentence_spans) # Shape(all_predictions): (batch_size, K, num_decoding_steps) # Shape(all_logprobs): (batch_size, K, num_decoding_steps) # Shape(seq_logprobs): (batch_size, K) # Shape(gate): (batch_size * K * num_spans, 1) # Shape(gate_probs): (batch_size * K * num_spans, 1) # Shape(gate_mask): (batch_size, num_spans) # Shape(g_att_score): (batch_size, num_heads, num_spans, num_spans) # Shape(orders): (batch_size, K, num_spans) all_predictions, \ all_logprobs, \ seq_logprobs, \ gate, \ gate_probs, \ gate_mask, \ g_att_score, \ orders = self._span_gate(spans_rep_sp, spans_mask, ques_output_sp, ques_mask, evd_chain_labels, self._gate_self_attention_layer, self._gate_sent_encoder, get_all_beam=True) batch_size, num_spans, max_batch_span_width = spans_mask.size() beam_size = all_predictions.size(1) # expand all the tensor to fit the beam size num_toks = modeled_passage.size(1) emb_dim = spans_rep.size(-1) spans_rep = spans_rep.reshape(batch_size, num_spans, max_batch_span_width, emb_dim) spans_rep = spans_rep.unsqueeze(1).expand(batch_size, beam_size, num_spans, max_batch_span_width, emb_dim) spans_rep = spans_rep.reshape(batch_size * beam_size * num_spans, max_batch_span_width, emb_dim) spans_mask = spans_mask[:, None, :, :].expand(batch_size, beam_size, num_spans, max_batch_span_width) spans_mask = spans_mask.reshape(batch_size * beam_size, num_spans, max_batch_span_width) context_mask = context_mask.unsqueeze(1).expand(batch_size, beam_size, num_toks) context_mask = context_mask.reshape(batch_size * beam_size, num_toks) se_mask = gate.expand(batch_size * beam_size * num_spans, max_batch_span_width).unsqueeze(-1) se_mask = convert_span_to_sequence(modeled_passage_sp, se_mask, spans_mask).squeeze(-1) spans_rep = spans_rep * gate.unsqueeze(-1) attended_sent_embeddings = convert_span_to_sequence(modeled_passage_sp, spans_rep, spans_mask) modeled_passage = attended_sent_embeddings self_att_passage = self._self_attention_layer(modeled_passage, mask=context_mask) modeled_passage = modeled_passage + self_att_passage[0] self_att_score = self_att_passage[2] output_start = self._span_start_encoder(modeled_passage, context_mask) span_start_logits = self.linear_start(output_start).squeeze(2) - 1e30 * (1 - context_mask * se_mask) output_end = torch.cat([modeled_passage, output_start], dim=2) output_end = self._span_end_encoder(output_end, context_mask) span_end_logits = self.linear_end(output_end).squeeze(2) - 1e30 * (1 - context_mask * se_mask) output_type = torch.cat([modeled_passage, output_end, output_start], dim=2) output_type = torch.max(output_type, 1)[0] # output_type = torch.max(self.rnn_type(output_type, context_mask), 1)[0] predict_type = self.linear_type(output_type) type_predicts = torch.argmax(predict_type, 1) best_span = self.get_best_span(span_start_logits, span_end_logits) output_dict = { "span_start_logits": span_start_logits.view(batch_size, beam_size, num_toks)[:, 0, :], "span_end_logits": span_end_logits.view(batch_size, beam_size, num_toks)[:, 0, :], "best_span": best_span.view(batch_size, beam_size, 2)[:, 0, :], "pred_sent_labels": gate.squeeze(1).view(batch_size, beam_size, num_spans)[:, 0, :], #[B, num_span] "gate_probs": gate_probs.squeeze(1).view(batch_size, beam_size, num_spans)[:, 0, :], #[B, num_span] "pred_sent_orders": orders, #[B, K, num_span] } if self._output_att_scores: if not qc_score is None: output_dict['qc_score'] = qc_score if not qc_score_sp is None: output_dict['qc_score_sp'] = qc_score_sp if not self_att_score is None: output_dict['self_attention_score'] = self_att_score if not g_att_score is None: output_dict['evd_self_attention_score'] = g_att_score # compute evd rl training metric, rewards, and loss print("sent label:") for b_label in np.array(sent_labels.cpu()): b_label = b_label == 1 indices = np.arange(len(b_label)) print(indices[b_label] + 1) evd_TP, evd_NP, evd_NT = self._f1_metrics(gate.squeeze(1).view(batch_size, beam_size, num_spans)[:, 0, :], sent_labels, mask=gate_mask, instance_mask=evd_instance_mask if self.training else None, sum=False) print("TP:", evd_TP) print("NP:", evd_NP) print("NT:", evd_NT) evd_ps = np.array(evd_TP) / (np.array(evd_NP) + 1e-13) evd_rs = np.array(evd_TP) / (np.array(evd_NT) + 1e-13) evd_f1s = 2. * ((evd_ps * evd_rs) / (evd_ps + evd_rs + 1e-13)) #print("evd_f1s:", evd_f1s) predict_mask = get_evd_prediction_mask(all_predictions[:, :1, :], eos_idx=0)[0] gold_mask = get_evd_prediction_mask(evd_chain_labels, eos_idx=0)[0] # ChainAccuracy defaults to take multiple predicted chains, so unsqueeze dim 1 self.evd_sup_acc_metric(predictions=all_predictions[:, :1, :], gold_labels=evd_chain_labels, predict_mask=predict_mask, gold_mask=gold_mask, instance_mask=evd_instance_mask) print("gold chain:", evd_chain_labels) # Compute the EM and F1 on SQuAD and add the tokenized input to the output. # Compute before loss for rl best_span = best_span.view(batch_size, beam_size, 2) if metadata is not None: output_dict['best_span_str'] = [] output_dict['answer_texts'] = [] question_tokens = [] passage_tokens = [] token_spans_sp = [] token_spans_sent = [] sent_labels_list = [] evd_possible_chains = [] ans_sent_idxs = [] pred_chains_include_ans = [] beam_pred_chains_include_ans = [] beam2_pred_chains_include_ans = [] ids = [] ems = [] f1s = [] rb_ems = [] ch_lens = [] #count_yes = 0 #count_no = 0 for i in range(batch_size): question_tokens.append(metadata[i]['question_tokens']) passage_tokens.append(metadata[i]['passage_tokens']) token_spans_sp.append(metadata[i]['token_spans_sp']) token_spans_sent.append(metadata[i]['token_spans_sent']) sent_labels_list.append(metadata[i]['sent_labels']) ids.append(metadata[i]['_id']) passage_str = metadata[i]['original_passage'] offsets = metadata[i]['token_offsets'] answer_texts = metadata[i].get('answer_texts', []) output_dict['answer_texts'].append(answer_texts) beam_best_span_string = [] beam_f1s = [] beam_ems = [] beam_rb_ems = [] beam_ch_lens = [] for b_idx in range(beam_size): if type_predicts[i] == 1: best_span_string = 'yes' #count_yes += 1 elif type_predicts[i] == 2: best_span_string = 'no' #count_no += 1 else: predicted_span = tuple(best_span[i, b_idx].detach().cpu().numpy()) start_offset = offsets[predicted_span[0]][0] end_offset = offsets[predicted_span[1]][1] best_span_string = passage_str[start_offset:end_offset] beam_best_span_string.append(best_span_string) if answer_texts: em, f1 = self._squad_metrics(best_span_string.lower(), answer_texts) beam_ems.append(em) beam_f1s.append(f1) rb_chain = [s_idx-1 for s_idx in metadata[i]['evd_possible_chains'][0] if s_idx > 0] pd_chain = [s_idx-1 for s_idx in all_predictions[i, b_idx].detach().cpu().numpy() if s_idx > 0] beam_rb_ems.append(float(rb_chain == pd_chain)) beam_ch_lens.append(float(len(pd_chain))) ems.append(beam_ems) f1s.append(beam_f1s) rb_ems.append(beam_rb_ems) ch_lens.append(beam_ch_lens) output_dict['best_span_str'].append(beam_best_span_string[0]) # shift sentence indice back evd_possible_chains.append([s_idx-1 for s_idx in metadata[i]['evd_possible_chains'][0] if s_idx > 0]) ans_sent_idxs.append([s_idx-1 for s_idx in metadata[i]['ans_sent_idxs']]) print("ans_sent_idxs:", metadata[i]['ans_sent_idxs']) if len(metadata[i]['ans_sent_idxs']) > 0: pred_sent_orders = orders[i].detach().cpu().numpy() if any([pred_sent_orders[0][s_idx-1] >= 0 for s_idx in metadata[i]['ans_sent_idxs']]): self.evd_ans_metric(1) pred_chains_include_ans.append(1) else: self.evd_ans_metric(0) pred_chains_include_ans.append(0) if any([any([pred_sent_orders[beam][s_idx-1] >= 0 for s_idx in metadata[i]['ans_sent_idxs']]) for beam in range(len(pred_sent_orders))]): self.evd_beam_ans_metric(1) beam_pred_chains_include_ans.append(1) else: self.evd_beam_ans_metric(0) beam_pred_chains_include_ans.append(0) if any([any([pred_sent_orders[beam][s_idx-1] >= 0 for s_idx in metadata[i]['ans_sent_idxs']]) for beam in range(2)]): self.evd_beam2_ans_metric(1) beam2_pred_chains_include_ans.append(1) else: self.evd_beam2_ans_metric(0) beam2_pred_chains_include_ans.append(0) output_dict['question_tokens'] = question_tokens output_dict['passage_tokens'] = passage_tokens output_dict['token_spans_sp'] = token_spans_sp output_dict['token_spans_sent'] = token_spans_sent output_dict['sent_labels'] = sent_labels_list output_dict['evd_possible_chains'] = evd_possible_chains output_dict['ans_sent_idxs'] = ans_sent_idxs output_dict['pred_chains_include_ans'] = pred_chains_include_ans output_dict['beam_pred_chains_include_ans'] = beam_pred_chains_include_ans output_dict['_id'] = ids # Compute the loss for training. # RL Loss equals ``-log(P) * (R - baseline)`` # Shape: (batch_size, num_decoding_steps) tot_rs = 0. if "ans" in self._ft_reward: ans_rs = seq_logprobs.new_tensor(f1s) # shape: (batch_size, beam_size) print('ans rs:', ans_rs) tot_rs = tot_rs + ans_rs if "rb" in self._ft_reward: rb_rs = seq_logprobs.new_tensor(rb_ems) # shape: (batch_size, beam_size) print('rb rs:', rb_rs) tot_rs = tot_rs + 0.7 * rb_rs if "len" in self._ft_reward: len_rs = seq_logprobs.new_tensor(ch_lens) # shape: (batch_size, beam_size) len_rs = (1. - len_rs / 5.) * (len_rs > 0).float() print("len rs:", len_rs) tot_rs = tot_rs + 0.7 * len_rs #rs_baseline = torch.mean(rs) rs_baseline = 0#torch.mean(tot_rs) tot_rs = tot_rs - rs_baseline rl_loss = -torch.mean(seq_logprobs * tot_rs) if span_start is not None: try: loss = rl_loss self._loss_trackers['loss'](loss) self._loss_trackers['rl_loss'](rl_loss) output_dict["loss"] = loss except RuntimeError: print('\n meta_data:', metadata) print(output_dict['_id']) print(span_start_logits.shape) return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: exact_match, f1_score = self._squad_metrics.get_metric(reset) p, r, evidence_f1_score = self._f1_metrics.get_metric(reset) ans_in_evd = self.evd_ans_metric.get_metric(reset) beam_ans_in_evd = self.evd_beam_ans_metric.get_metric(reset) beam2_ans_in_evd = self.evd_beam2_ans_metric.get_metric(reset) metrics = { 'em': exact_match, 'f1': f1_score, 'evd_p': p, 'evd_r': r, 'evd_f1': evidence_f1_score, 'ans_in_evd': ans_in_evd, 'beam_ans_in_evd': beam_ans_in_evd, 'beam2_ans_in_evd': beam2_ans_in_evd, } for name, tracker in self._loss_trackers.items(): metrics[name] = tracker.get_metric(reset).item() evd_sup_acc = self.evd_sup_acc_metric.get_metric(reset) metrics['evd_sup_acc'] = evd_sup_acc return metrics @staticmethod def get_best_span(span_start_logits: torch.Tensor, span_end_logits: torch.Tensor) -> torch.Tensor: if span_start_logits.dim() != 2 or span_end_logits.dim() != 2: raise ValueError("Input shapes must be (batch_size, passage_length)") batch_size, passage_length = span_start_logits.size() max_span_log_prob = [-1e20] * batch_size span_start_argmax = [0] * batch_size best_word_span = span_start_logits.new_zeros((batch_size, 2), dtype=torch.long) span_start_logits = span_start_logits.detach().cpu().numpy() span_end_logits = span_end_logits.detach().cpu().numpy() for b in range(batch_size): # pylint: disable=invalid-name for j in range(passage_length): val1 = span_start_logits[b, span_start_argmax[b]] if val1 < span_start_logits[b, j]: span_start_argmax[b] = j val1 = span_start_logits[b, j] val2 = span_end_logits[b, j] if val1 + val2 > max_span_log_prob[b]: best_word_span[b, 0] = span_start_argmax[b] best_word_span[b, 1] = j max_span_log_prob[b] = val1 + val2 return best_word_span
def __init__(self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, phrase_layer: Seq2SeqEncoder, phrase_layer_sp: Seq2SeqEncoder, span_start_encoder: Seq2SeqEncoder, span_end_encoder: Seq2SeqEncoder, self_attention_layer: Seq2SeqEncoder, gate_sent_encoder: Seq2SeqEncoder, gate_self_attention_layer: Seq2SeqEncoder, type_encoder: Seq2SeqEncoder, modeling_layer: Seq2SeqEncoder, modeling_layer_sp: Seq2SeqEncoder, span_gate: Seq2SeqEncoder, dropout: float = 0.2, output_att_scores: bool = True, weights_file: str = None, ft_reward: str = "ans", regularizer: Optional[RegularizerApplicator] = None) -> None: super(FineTuneRLBidirectionalAttentionFlow, self).__init__(vocab, regularizer) self._text_field_embedder = text_field_embedder self._phrase_layer = phrase_layer self._phrase_layer_sp = phrase_layer_sp self._dropout = torch.nn.Dropout(p=dropout) self._modeling_layer = modeling_layer self._modeling_layer_sp = modeling_layer_sp self._span_start_encoder = span_start_encoder self._span_end_encoder = span_end_encoder self._type_encoder = type_encoder self._self_attention_layer = self_attention_layer self._output_att_scores = output_att_scores self._ft_reward = ft_reward.split('+') encoding_dim = span_start_encoder.get_output_dim() self._span_gate = span_gate self.qc_att = BiAttention(encoding_dim, 0.0) self.qc_att_sp = BiAttention(encoding_dim, dropout) self._gate_sent_encoder = gate_sent_encoder self._gate_self_attention_layer = gate_self_attention_layer self.linear_start = nn.Linear(encoding_dim, 1) self.linear_end = nn.Linear(encoding_dim, 1) self.linear_type = nn.Linear(encoding_dim * 3, 3) self._squad_metrics = SquadEmAndF1_RT() self._f1_metrics = AttF1Measure(0.5, top_k=False) self._loss_trackers = {'loss': Average(), 'rl_loss': Average()} if self._span_gate.evd_decoder._train_helper_type == 'teacher_forcing': raise ValueError("train_helper should not be teacher forcing during fine tune!") self.evd_sup_acc_metric = ChainAccuracy() self.evd_ans_metric = Average() self.evd_beam_ans_metric = Average() self.evd_beam2_ans_metric = Average() # load the weights if weights_file: model_state = torch.load(weights_file, map_location=util.device_mapping(0)) self.load_state_dict(model_state) for p in self._text_field_embedder.parameters(): p.requires_grad = False
def __init__(self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, phrase_layer: Seq2SeqEncoder, phrase_layer_sp: Seq2SeqEncoder, span_start_encoder: Seq2SeqEncoder, span_end_encoder: Seq2SeqEncoder, self_attention_layer: Seq2SeqEncoder, gate_sent_encoder: Seq2SeqEncoder, gate_self_attention_layer: Seq2SeqEncoder, type_encoder: Seq2SeqEncoder, modeling_layer: Seq2SeqEncoder, modeling_layer_sp: Seq2SeqEncoder, span_gate: Seq2SeqEncoder, dropout: float = 0.2, output_att_scores: bool = True, regularizer: Optional[RegularizerApplicator] = None) -> None: super(RLBidirectionalAttentionFlow, self).__init__(vocab, regularizer) self._text_field_embedder = text_field_embedder self._phrase_layer = phrase_layer self._phrase_layer_sp = phrase_layer_sp self._dropout = torch.nn.Dropout(p=dropout) self._modeling_layer = modeling_layer self._modeling_layer_sp = modeling_layer_sp self._span_start_encoder = span_start_encoder self._span_end_encoder = span_end_encoder self._type_encoder = type_encoder self._self_attention_layer = self_attention_layer self._output_att_scores = output_att_scores encoding_dim = span_start_encoder.get_output_dim() self._span_gate = span_gate self.qc_att = BiAttention(encoding_dim, dropout) self.qc_att_sp = BiAttention(encoding_dim, dropout) self._gate_sent_encoder = gate_sent_encoder self._gate_self_attention_layer = gate_self_attention_layer self.linear_start = nn.Linear(encoding_dim, 1) self.linear_end = nn.Linear(encoding_dim, 1) self.linear_type = nn.Linear(encoding_dim * 3, 3) self._squad_metrics = SquadEmAndF1_RT() self._f1_metrics = AttF1Measure(0.5, top_k=False) self._loss_trackers = { 'loss': Average(), 'start_loss': Average(), 'end_loss': Average(), 'type_loss': Average(), 'rl_loss': Average() } self.evd_sup_acc_metric = ChainAccuracy() self.evd_ans_metric = Average() self.evd_beam_ans_metric = Average()