예제 #1
0
def inference(x, y_, keep_prob, phase_train):
    with tf.variable_scope('conv_1'):
        conv1 = Convolution2D(x, (28, 28), 1, 32, (5, 5), activation='none')
        conv1_bn = batch_norm(conv1.output(), 32, phase_train)
        conv1_out = tf.nn.relu(conv1_bn)

        pool1 = MaxPooling2D(conv1_out)
        pool1_out = pool1.output()

    with tf.variable_scope('conv_2'):
        conv2 = Convolution2D(pool1_out, (14, 14),
                              32,
                              64, (5, 5),
                              activation='none')
        conv2_bn = batch_norm(conv2.output(), 64, phase_train)
        conv2_out = tf.nn.relu(conv2_bn)

        pool2 = MaxPooling2D(conv2_out)
        pool2_out = pool2.output()

        pool2_flat = tf.reshape(pool2_out, [-1, 7 * 7 * 64])

    with tf.variable_scope('fc1'):
        fc1 = FullConnected(pool2_flat, 7 * 7 * 64, 1024)
        fc1_out = fc1.output()
        fc1_dropped = tf.nn.dropout(fc1_out, keep_prob)

    y_pred = ReadOutLayer(fc1_dropped, 1024, 10).output()

    loss = tf.reduce_mean(
        -tf.reduce_sum(y_ * tf.log(y_pred), reduction_indices=[1]))
    accuracy = evaluation(y_pred, y_)

    return loss, accuracy, y_pred
예제 #2
0
    def create_net(self):
        self.layers = [self.x_image]
        with tf.variable_scope('encoder') as vs:
            self.create_encoder_conv([2])
            self.create_encoder_fc([5])

            self.latent = FullConnected(
                self.layers[-1],
                self.layers[-1].get_shape().as_list()[1],
                self.latent_dim,
                activation='identity',
                name="latent").output()
            self.layers.append(self.latent)

        with tf.variable_scope('decoder') as vs:
            self.create_decoder_fc([5, self.traj_length * 2],
                                   [-1, self.traj_length, 2, 1])
            self.create_decoder_conv([2, 1])

            print("Last layer")
            print(self.layers[-1].get_shape().as_list())
            res = tf.reshape(self.layers[-1], [-1, self.traj_length * 2],
                             name="reconstructed")
            self.layers.append(res)
            self.decoded = FullConnected(
                self.layers[-1],
                self.layers[-1].get_shape().as_list()[1],
                100,
                activation='identity',
                name="decoded").output()
            self.layers.append(self.decoded)
예제 #3
0
    def create_decoder_fc(self, conf, final_shape):
        for i in range(len(conf)):
            if i > 1:
                drop = tf.nn.dropout(self.layers[-1], self.keep_prob)
                self.layers.append(drop)

            fc = FullConnected(self.layers[-1],
                               self.layers[-1].get_shape().as_list()[1],
                               conf[i],
                               activation='sigmoid')
            self.layers.append(fc.output())
        self.layers.append(tf.reshape(self.layers[-1], final_shape))
예제 #4
0
    def create_encoder_fc(self, conf):
        size = self.layers[-1].get_shape().as_list()
        self.layers.append(
            tf.reshape(self.layers[-1], [-1, size[1] * size[2] * size[3]]))
        for i in range(len(conf)):
            if i > 1:
                drop = tf.nn.dropout(self.layers[-1], self.keep_prob)
                self.layers.append(drop)

            fc = FullConnected(self.layers[-1],
                               self.layers[-1].get_shape().as_list()[1],
                               conf[i],
                               activation='sigmoid')
            self.layers.append(fc.output())
def mk_nn_model(x, y_):
    # Encoding phase
    x_image = tf.reshape(x, [-1, 28, 28, 1])    
    conv1 = Convolution2D(x_image, (28, 28), 1, 8, 
                          (9, 9), activation='sigmoid')
    conv1_out = conv1.output()

#    pool1 = MaxPooling2D(conv1_out)
#    pool1_out = pool1.output()
#    pool1_out = tf.nn.dropout(pool1_out,keep_prob=0.2)

    conv2 = Convolution2D(conv1_out, (28, 28), 8, 4, 
                          (9, 9), activation='sigmoid')
    conv2_out = conv2.output()
    
#    pool2 = MaxPooling2D(conv2_out)
#    pool2_out = pool2.output()
#    pool2_out = tf.nn.dropout(pool2_out,keep_prob=0.2)

    # at this point the representation is (4, 28, 28) i.e. 128*16-dimensional
    po = tf.reshape(conv2_out,[-1,4*28*28])

    fc = FullConnected(po, 4*28*28, 256, activation='sigmoid')
    fc_out = fc.output()

#    fc2 = FullConnected(fc_out, 256, 2, activation='sigmoid')
#    fc2_out = fc2.output()

    fo = FullConnected(fc_out, 256, 10, activation='sigmoid')
    fo_out = fo.output()

    # Decoding phase
    dfc1 = FullConnected(fo_out, 10, 256, activation='sigmoid')
    dfc1_out = dfc1.output()

# reshape 
    deconvin = tf.reshape(dfc1_out, [-1,16,16,1])

#resize_images(images, size, method=ResizeMethod.BILINEAR, align_corners=False)
    deconvin = tf.image.resize_images(deconvin, (28,28),method=tf.image.ResizeMethod.BILINEAR, align_corners=False)

    conv_t1 = Conv2Dtranspose(deconvin, (28, 28), 1, 4,
                         (12, 12), activation='sigmoid')
    conv_t1_out = conv_t1.output()

    conv_t2 = Conv2Dtranspose(conv_t1_out, (28, 28), 4, 4,
                         (17, 17), activation='sigmoid')
    conv_t2_out = conv_t2.output()

    conv_t3 = Conv2Dtranspose(conv_t2_out, (28, 28), 4, 1, 
                         (1, 1), activation='sigmoid')
    decoded = conv_t3.output()

    decoded = tf.reshape(decoded, [-1, 784])
    cross_entropy = -1. *x *tf.log(decoded) - (1. - x) *tf.log(1. - decoded)
    loss = tf.reduce_mean(cross_entropy)

    # crossentry for  classifier
    cross_entropy_acc = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=fo_out)
    lossacc = tf.reduce_mean(cross_entropy_acc)

    # accuracy of the trained model, between 0 (worst) and 1 (best)
    correct_prediction = tf.equal(tf.argmax(fo_out, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    return loss, decoded, lossacc, fo_out, accuracy
예제 #6
0
def mk_nn_model(x, y_):
    # Encoding phase
    x_image = tf.reshape(x, [-1, 227, 227, 3])

    #1st conv.
    conv1 = Convolution2D(x_image, (227, 227),
                          3,
                          96, (7, 7),
                          activation='relu',
                          S=4)
    conv1_out = conv1.output()

    #1st pooling
    pool1 = MaxPooling2D(conv1_out, ksize=[1, 3, 3, 1], S=2)
    pool1_out = pool1.output()

    #dropout?
    #    pool1_out = tf.nn.dropout(pool1_out,keep_prob=0.2)

    #LRN1
    norm1 = tf.nn.local_response_normalization(pool1_out,
                                               depth_radius=5,
                                               alpha=0.0001,
                                               beta=0.75)

    #2nd conv.
    conv2 = Convolution2D(norm1, (29, 29),
                          96,
                          256, (5, 5),
                          activation='relu',
                          S=1)  # pad=2 - how to do it????
    conv2_out = conv2.output()

    #2nd pooling
    pool2 = MaxPooling2D(conv2_out, ksize=(1, 3, 3, 1), S=2)
    pool2_out = pool2.output()
    #    pool2_out = tf.nn.dropout(pool2_out,keep_prob=0.2)
    norm2 = tf.nn.local_response_normalization(pool2_out,
                                               depth_radius=5,
                                               alpha=0.0001,
                                               beta=0.75)

    #3rd conv.
    conv3 = Convolution2D(norm2, (15, 15),
                          256,
                          384, (3, 3),
                          activation='relu',
                          S=1)  # pad=2 - how to do it????
    conv3_out = conv3.output()

    #3rd pooling
    pool3 = MaxPooling2D(conv3_out, ksize=(1, 3, 3, 1), S=2)
    pool3_out = pool3.output()

    # at this point the representation is (4, 28, 28) i.e. 128*16-dimensional
    po = tf.reshape(pool3_out, [-1, 384 * 8 * 8])

    fc6 = FullConnected(po, 384 * 8 * 8, 512, activation='relu')
    fc6_out = fc6.output()

    drop6 = tf.nn.dropout(fc6_out, keep_prob=0.5)

    fc7 = FullConnected(drop6, 512, 512, activation='relu')
    fc7_out = fc7.output()

    drop7 = tf.nn.dropout(fc7_out, keep_prob=0.5)

    fc8 = FullConnected(drop7, 512, 8, activation='relu')
    fc8_out = fc8.output()

    # crossentry for  classifier
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_,
                                                            logits=fc8_out)
    loss = tf.reduce_mean(cross_entropy)

    # accuracy of the trained model, between 0 (worst) and 1 (best)
    correct_prediction = tf.equal(tf.argmax(fc8_out, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    return loss, accuracy, fc8_out