예제 #1
0
#        fp.write('set term postscript eps enhanced color;set output "tmp/predict.eps"\n')
#        fp.write('plot "{}" using 2:3 w l t "y","" using 2:1 w l t "yp", "" using 2:($1-$3) w l t "yp-y"\n'.format(fnpred))
#        fp.close()
#        my_misc.myshell('gnuplot tmp/predict.plt;gv tmp/predict.eps&')

    if net['data_class'] == 'ts':  #time-series
        #   test=copy.deepcopy(givendata)
        #    import pdb;pdb.set_trace(); #for debug
        sim.exec_msp_test(net, givendata, test, args)
#  elif args.ex!='': #??
#   sim.exec_ssp_test(net, givendata, test)
    elif args.fnl != '':
        t = 0
        n_train = 0
        #    import pdb;pdb.set_trace(); #for debug
        test['y'][t, 0], y, test['Y'][t, 0] = my_plinn.calc_output(
            net, test['x'][t, :], test['x'][t, :k])
        with open(net['fnpred'], 'w') as fp:
            fp.write('%.7e %d %.7e %.7e %.7e %.7e #Y^,t,Y,y,c,e2\n' %
                     (test['Y'][t], t - n_train + 1, givendata['Y'][t],
                      test['y'][t], net['c'][t], (test['e'][t])**2))

##
###########
##########################
####### Save results
##########################
#  import pdb;pdb.set_trace(); #for debug
    print(net['mes'])
    #
    fnlst = []
    if args.fns != '':
예제 #2
0
def main():
    #引数設定
    parser = argparse.ArgumentParser(description='Chainer example: MNIST')
    parser.add_argument('--gpu',
                        '-g',
                        default=-1,
                        type=int,
                        help='GPU ID (negative value indicates CPU)')
    ###########kuro
    parser.add_argument(
        '-bag',
        type=str,
        default='100,0.7,1,4',
        help=
        'b,a,s,m for bagging; b=n_bags, a=bagsize-ratio,s=seed,m,number-of-parallel'
    )
    ##function_approximation
    parser.add_argument(
        '-fn',
        type=str,
        default='',
        help=
        'fntrain,fntest,IDexe; IDexe:ID of execution for parallel processing')
    parser.add_argument('-k',
                        type=str,
                        default='',
                        help='k1 and k2: number of input channels k=k1,k2=0')

    ###init_net() in my_plinn.c
    parser.add_argument(
        '--inet',
        '-in',
        type=str,
        default='',
        help='n-units,n_compare, v_thresh,vmin,vmin2,v_ratio,width')

    parser.add_argument(
        '-ex',
        type=str,
        default='',
        help='l_mode,gamma0,nentropy_thresh, n-it, n-display,rot_x,rot_y')
    parser.add_argument('--seed',
                        '-s',
                        default='',
                        type=str,
                        help='seed of random number')
    parser.add_argument('-DISP',
                        default='',
                        type=str,
                        help='0 for display no-figures.')
    parser.add_argument(
        '-Tpinv',
        default='',
        type=str,
        help='Tpinv for use pseudo-inverse from t=Tpinv learning iterations.')
    parser.add_argument('-nop',
                        type=int,
                        default=0,
                        help='1 for noprint 0 for print')

    ##########kuro
    parser.add_argument(
        '--epochs',
        '-e',
        type=str,
        default='',  #type=int, default=100, 
        help='number of epochs to learn')
    parser.add_argument(
        '-BIAS',
        '-B',
        type=str,
        default='',  #type=int, default=1, 
        help='Bias')
    parser.add_argument(
        '-Lstd',
        '-Ls',
        type=str,
        default='',  #default="0,2"
        help='Lstd,Lsdtm')
    parser.add_argument(
        '-ib',
        '-ib',
        type=str,
        default='',  #"0,0,0,0", 
        help='ib')

    ### load_data() in my_function.c
    #  parser.add_argument('--data_class', '-dc', type=str, default='', #'1',
    #                      help='data_class 0:timeseries,1:regression')

    ###
    #  parser.add_argument('-Nbas', type=str, default='60,100,0.7,1',
    #                      help='N,b,a,s for bagging; N:number of units, b=n_bags, a=bagsize-ratio,s=seed,N,numberofunits')

    parser.add_argument(
        '-t',
        type=str,
        default='',
        help=
        'null for regression, t:tr0-tr1:tp0-tp1:tpD:Ey for |tpD|-step ahead prediction with recursive tpD>0, non-recursive tpD<0 '
    )
    #  parser.add_argument('-t', type=str, default='',
    #                      help='null for regression, t:tr0-tr1:tp0-tp1:tpD:tpG:Ey for recursive tpD-step ahead prediction with tpG=0, non-recursive one step ahead pred with tpG=1')

    ### normalize_data(DATA *givendata, NET *net)
    parser.add_argument(
        '--ytrans',
        '-y',
        type=str,
        default='',  #"0,0,0,0",
        help=
        'ymin0,ymax0,ymin1,ymax1 to transform y in [ymin0,ymax0] to y in [ymin1,ymax1]'
    )
    parser.add_argument(
        '--xtrans',
        '-x',
        type=str,
        default='',  #"0,0,0,0",
        help=
        'xmin0,xmax0,xmin1,xmax1 to transform x in [xmin0,xmax0] to x in [xmin1,xmax1]'
    )
    parser.add_argument(
        '-r',
        type=str,
        default='',  #"0,0,0",
        help=
        'r1,r2 for integers r1 and r2 is the resolution, no digitization if r1=0'
    )

    parser.add_argument(
        '--pinv',
        '-pI',
        type=str,
        default='',  #default=0, type=int,
        help='1 for use pseudo-inverse')

    #later#  parser.add_argument('--resume', type=str, default='', # 'log/model.npz,0',
    #later#                      help='Resume the model')
    #later#
    #later#  parser.add_argument('--alpha','-a', type=float, default=0.001) #learning rate?
    #later##  parser.add_argument('--LINESIZE','-L', type=float, default=0)
    #later#  parser.add_argument('--n_bags','-nb', type=float, default=1)
    #later#  parser.add_argument('--n','-n', type=str, default='1,10,10,1',
    #later#                      help='<0>,<N1>,<nens>,<NStep> or <1>,<N1>,<N2>,<NStep> ')
    #later#  parser.add_argument('--chkomit','-ch', type=int, default=0)
    #later#  parser.add_argument('--bagging','-bg', type=str, default='tmp/train-test.csv',help='if BAGGING = BAGwithoutVal enter /dev/null. Or tmp/train-test.csv or tmp/test.csv')
    #later#  parser.add_argument('--Tsk', '-Tsk', default="0,0,0,0", type=str,
    #later#                      help='<Task>[,<t1>,<t2>,<t0>] <Task>==1 for regression, ==0 for time-series [t0:t1+t0-1] for training;[t1+t0:t2+t0] for test.')
    #later#  parser.add_argument('--lossall','-lossall', type=str, default=0)
    #later#  parser.add_argument('--lcom','-lcom', type=str, default=0)
    #later#  parser.add_argument('--r0','-r0', type=int, default=0,
    #later#                      help='0 or 1')
    #later#  parser.add_argument('--ib','-ibm', type=str, default='0,0',help='-1 is NULL')#ibmode
    #later#  parser.add_argument('--LDm','-Ldm', type=str, default=2)#LDmode
    #later#  parser.add_argument('--bst','-bst', type=str, default='0,0')#boost
    #later#  parser.add_argument('--t','-t', type=str, default='result')#fn_target
    #later#  parser.add_argument('--i','-i', type=int, default='0')#intmode
    #later#  parser.add_argument('--rdm','-rdm', type=int, default='0')#rangedatamode
    #later#  parser.add_argument('--ssp','-ssp', type=int, default='0')#ssp
    #later#  parser.add_argument('-tau','-tau' , type=str, default="0,8.0,8.0,2.0",
    #later#                      help='0,tau_c,&tau_h,&eta1 or 1,tau_c,&tau_h')
    #later#  parser.add_argument('--bayes','-bayes' , type=str, default="0,0,0,0,1",
    #later#                      help='Bayes,BayesLambdaL,BayesLambdaS,BayesUseAllData,Bayesseed'),
    #later#  parser.add_argument('--nobt','-nobt', type=int, default='0')#nob_thresh
    #later#  parser.add_argument('--fupdate','-fupdate', type=str, default='1')#fupdate
    #later#  parser.add_argument('--pupdate','-pupdate', type=str, default='1')#pupdate
    #later#  parser.add_argument('--e4t','-e4t', type=float, default=0)#err4terminate
    #later#  parser.add_argument('--e4p','-e4p', type=float, default=0)#err4propagate

    #############
    args = parser.parse_args()
    argv = sys.argv
    cmd = ''
    for i, v in enumerate(argv):
        cmd += v + ' '
    print('#start:python {}'.format(cmd))

    #初期化
    MULTIFOLD = 1
    NoBAG = 0
    BAGwithVal = 1
    BAGwithoutVal = 2
    NoBoost = 0
    EmBoost = 1
    GbBoost = 2

    BAGGING = NoBAG
    #L177
    Boost = NoBoost
    meannTestData = 0
    nValData = 0
    t_boost = 0
    #apply boosting for t_boost>=1, Gradient-based boosting for t_boost==-2
    #  chkomit = 0;  #chkomit=1;
    fnsize = 256
    #char **fntrain=NULL;//fntrain[nFoldsmax][256];
    #char **fntest=NULL;// char fntest[nFoldsmax][256];
    err4propagate = 0
    err4terminate = 0
    nop = 0

    if args.t == '':
        data_class = 'reg'  #regression or function approximation
    else:
        data_class = 'ts'  #time_series

########
    fn = args.fn.split(',')
    lfn = len(fn)
    if lfn <= 0:
        print('#specify -fn <fntrain>,<fntest>,<fnpred>')
        quit()
    fntest0, fnpred0 = '/dev/null', 'tmp/predict.dat'  #defalut
    if lfn >= 1:
        fntrain0 = fn[0]
        if lfn >= 2:
            fntest0 = fn[1]
            if lfn >= 3:
                fnpred0 = fn[2]
####
#  import pdb;pdb.set_trace() #for debug
#  argsNbas=args.Nbas.split(',')
#  N=n_units=int(argsNbas[0])
#  b_bag=n_Folds=n_bags=int(argsNbas[1])
#  a_bag=float(argsNbas[2])
#  s_bag=int(argsNbas[3])

    argsbag = args.bag.split(',')
    largsbag = len(argsbag)
    b_bag, a_bag, s_bag, m_bag = 10, 0.7, 1, 0  #default

    if largsbag >= 1:
        b_bag = n_Folds = n_bags = int(argsbag[0])
        if largsbag >= 2:
            a_bag = float(argsbag[1])
            if largsbag >= 3:
                s_bag = int(argsbag[2])
                if largsbag >= 4:
                    m_cpu = int(argsbag[3])
    if m_cpu <= 0:
        m_cpu = multi.cpu_count()

    if args.k != '':
        _k = map(int, args.k.split(','))
        _k2 = 0
        if len(_k) >= 2:
            _k1, _k2 = _k
        else:
            _k1 = _k[0]
        k = _k1 + _k2
        k1 = k + 1

    if args.inet == '':
        print(
            '#specify -in <n-units>,<n_compare>,<v_thresh>,<vmin>,<vmin2>,<v_ratio>,<width>'
        )
        quit()
    else:
        n_units = NC = args.inet.split(',')[0]
#  import pdb;pdb.set_trace() #for debug
#  inet = args.inet.split(',')
#  N=NC = int(inet[1])
#  vt = float(inet[2])
#  vm = int(inet[3])
#  vr = float(inet[5])
#  w = float(inet[6]) #L769

    cmd_can2 = '-k {} -in {} -s {}'.format(k, args.inet, s_bag)

    if args.ex != '':
        cmd_can2 += ' -ex {}'.format(args.ex)
        ex = args.ex.split(',')
        T = ex[3]
    if args.Tpinv != '':
        cmd_can2 += ' -Tpinv {}'.format(args.Tpinv)
        Tpinv = args.Tpinv
    if args.seed != '':
        cmd_can2 += ' -s {}'.format(args.seed)
        seed = int(args.seed)
    if args.nop != '':
        cmd_can2 += ' -nop {}'.format(args.nop)
        nop = args.nop
    if args.DISP != '':
        cmd_can2 += ' -DISP {}'.format(args.DISP)
    if args.BIAS != '':
        cmd_can2 += ' -BIAS {}'.format(args.BIAS)
    if args.Lstd != '':
        cmd_can2 += ' -Ls {}'.format(args.Lstd)
    if args.ib != '':
        cmd_can2 += ' -ib {}'.format(args.ib)
#  if args.data_class !='':
#    cmd_can2 += ' -dc {}'.format(args.data_class)
    if args.ytrans != '':
        cmd_can2 += ' -y " {}"'.format(args.ytrans)
        if data_class == 'ts':
            cmd_can2 += ' -x " {}"'.format(args.ytrans)
    if args.xtrans != '':
        cmd_can2 += ' -x {}'.format(args.xtrans)
    if args.r != '':
        cmd_can2 += ' -r {}'.format(args.r)
    if args.pinv != '':
        cmd_can2 += ' -pI {}'.format(args.pinv)
    if args.gpu != '' and args.gpu >= 0:
        cmd_can2 += ' -g {}'.format(args.gpu)
#  if args.t !='':
#    cmd_can2 += ' -t {}'.format(args.t)

    set_random_seed(s_bag)

    #  nr=xp.zeros((n_Folds,n_train),dtype=xp.int32)
    #  nc=xp.zeros((n_Folds,n_train0),dtype=xp.int32)
    #  Itrain_Fold=[]
    #  Itest_Fold=[]

    cmd = []
    if data_class == 'ts':  #time-series
        if 1 == 0 and n_Folds <= 0:  #single CAN2
            cmdj = 'python can2.py -fn {} -t {} {}'.format(
                fntrain0, args.t, cmd_can2)
            cmd.append(cmdj)
        else:  ## if n_Folds<=0: #bagging CAN2
            argst = args.t.split(':')
            tr, tp = argst[0], argst[1]
            largst = len(argst)
            tpD, tpG, tpEy = 0, 0, 15
            if largst >= 3:
                tpD = int(argst[2])
                if largst >= 4:
                    tpG = int(argst[3])
                    if largst >= 5:
                        tpEy = int(argst[4])
            tr0, tr1 = map(int, tr.split('-'))
            tp0, tp1 = map(int, tp.split('-'))
            ###learning
            y0 = xp.array(
                pd.read_csv(fntrain0,
                            delim_whitespace=True,
                            dtype=xpfloat,
                            header=1))[:, 0]
            #      y0=xp.array(pd.read_csv(fntrain0,delim_whitespace=True,dtype=str,header=1))[:,0]
            #      import pdb;pdb.set_trace(); #for debug
            #y0=xp.array(pd.read_csv(fntrain0,delim_whitespace=True,dtype=xpfloat,header=1))[:,0]
            #      net['DiffMode']=0
            #      if net['DiffMode']==1:
            #        y1=xp.zeros((len(y0)-1),dtype=xpfloat)
            #        for t in range(len(y0)-1):
            #          y1[t]=y0[t+1]-y0[t]
            #        y0=y1
            n_train0 = tr1 - tr0 - k
            n_test0 = 1  #tp1-tp0
            #      train0=xp.zeros((n_train0,k1),dtype=str) #      train0=xp.zeros((n_train0,k1),dtype=xpfloat)
            #      train0=xp.zeros((n_train0,k1),dtype=unicode) #      train0=xp.zeros((n_train0,k1),dtype=xpfloat)
            train0 = xp.empty((n_train0, k1), dtype=object)
            for t in range(n_train0):
                t0 = t + tr0
                train0[t, :k] = y0[
                    t0:t0 +
                    k][::
                       -1]  #reverse y(t)= M(0)*y(t-1)+...+M(k-1)*y(t-k)...+ Mk*BIAS
                train0[t, k] = y0[t0 + k + tpD - 1]
#      import pdb;pdb.set_trace(); #for debug
###
            fntest0 = 'tmp/test{:03d}.dat'.format(tp0)
            test0 = xp.zeros(
                (1, k1), dtype=object)  #   test0=xp.zeros((1,k1),dtype=str)
            #      test0=xp.zeros((1,k1),dtype=xpfloat)
            #      import pdb;pdb.set_trace(); #for debug
            test0[0, :k] = y0[tp0 - k - tpD + 1:tp0 - tpD + 1][::-1]
            test0[0, k] = y0[tp0]
            df = pd.DataFrame(test0.reshape((-1, k1)))
            df.to_csv(fntest0,
                      index=False,
                      sep=' ',
                      header=None,
                      float_format='%.7e')

            Itrain0 = [i for i in range(len(train0))]
            n_train = bagsize = int(n_train0 * a_bag)
            prob = xp.ones((n_train0)) * 1. / n_train0  #same probability
            ##
            nc = xp.zeros((n_train0, n_Folds))  #
            fnpred = []
            fnnet = []
            for j in range(n_Folds):
                fnnetj = 'tmp/{}+null+b{}a{}s{}N{}k{}j{}.net'.format(
                    fn2dbe(fntrain0)[1], n_Folds, a_bag, s_bag, n_units, k, j)
                fnnet.append(fnnetj)
                #        import pdb;pdb.set_trace(); #for debug
                if not os.path.exists(fnnetj):
                    if n_Folds == 1:
                        Itrain_Foldj = [i for i in range(n_train0)]
                    else:
                        Itrain_Foldj = xp.random.choice(
                            Itrain0, size=n_train,
                            p=prob)  #functions as walkeralias
                    fntrainj = 'tmp/train{:03d}.dat'.format(j)
                    df = pd.DataFrame(train0[Itrain_Foldj, :].reshape(
                        (-1, k1)))
                    df.to_csv(fntrainj, index=False, sep=' ', header=None)
                    #          df.to_csv(fntrainj,index=False,sep=' ',header=None, float_format='%.7e')
                    fnpredj = 'tmp/tp{}-{}+null+b{}a{}s{}N{}k{}j{}.dat'.format(
                        tp0,
                        fn2dbe(fntrain0)[1], n_Folds, a_bag, s_bag, n_units, k,
                        j)
                    fnpred.append(fnpredj)
                    cmdj = 'python can2.py -fn {},{},{} -fns {} {}'.format(
                        fntrainj, fntest0, fnpredj, fnnetj, cmd_can2)
                    cmd.append(cmdj)
            ###############
            #  execution of learning bags
            ###############
            #import pdb;pdb.set_trace(); #for debug
            starttime = time.time()
            with concurrent.futures.ProcessPoolExecutor(m_cpu) as excuter:
                result_list = list(excuter.map(myshell, cmd))
            elapsed_time = time.time() - starttime
            #  print('#Elapled time={}'.format(elapsed_time))
            ###############
            ##net-load()
            ###############
            net = []
            for j in range(n_Folds):
                net.append(my_plinn.net_load(fnnet[j]))
        ###############
        #  execution of ensemble
        ###############
        n_pred = tp1 - tp0
        ypbag = xp.zeros((n_pred, n_Folds), dtype=xpfloat)
        Ypbag = xp.zeros((n_pred, n_Folds), dtype=xpfloat)
        #    yp=xp.zeros((k+n_pred),dtype=xp.float128) #    yp=xp.zeros((k+n_pred),dtype=xpfloat)
        #    yp[0:k]=y0[tp0-k:tp0].astype(xp.float128)
        #    import pdb;pdb.set_trace(); #for debug
        Y0 = y0.astype(xpfloat)
        #    y0=Y0
        y0 = my_function.moverange(Y0, net[0]['ymin0'], net[0]['ymax0'],
                                   net[0]['ymin'], net[0]['ymax'])
        #    import pdb;pdb.set_trace(); #for debug
        #move
        kD = k + tpD - 1
        Yp = xp.zeros((kD + n_pred), dtype=xpfloat)
        yp = xp.zeros((kD + n_pred), dtype=xpfloat)
        yp[0:kD] = y0[tp0 - kD:tp0]  # yp[0:k]=y0[tp0-kD:tp0-(tpD-1)]
        #t=0 or tp0
        x = xp.zeros((1, k1), dtype=xpfloat)
        x[0, k] = 1  #yp[t+k+tpD-1] #dummy?
        for t in range(0, n_pred):
            x[0, :k] = yp[
                t:t +
                k][::
                   -1]  #reverse y(t)= M(0)*y(t-1)+...+M(k-1)*y(t-k)...+ Mk*BIAS
            for j in range(n_Folds):
                ypbag[t, j], y2, Ypbag[t, j] = my_plinn.calc_output(
                    net[j], x[0, :], x[0, :k])
#        import pdb;pdb.set_trace(); #for debug
            Yp[t + kD] = xp.mean(Ypbag[t, :])
            yp[t + kD] = xp.mean(ypbag[t, :])
        mo = xp.concatenate((Yp[kD:].astype(str).reshape((-1, 1)),
                             xp.array([t for t in range(tp0 + tpD, tp1 + tpD)],
                                      dtype=str).reshape((-1, 1))),
                            axis=1)
        mo = xp.concatenate((mo, Y0[tp0:tp1].astype(str).reshape((-1, 1))),
                            axis=1)
        df = pd.DataFrame(mo)
        df.to_csv(fnpred0, index=False, sep=' ', header=None)
        #    import pdb;pdb.set_trace(); #for debug
        if 1 == 1:  #net['DISP']>0:
            import my_misc
            hpred = n_pred
            for t in range(n_pred):
                if abs(Yp[t + k] - Y0[t + tp0]) > tpEy:
                    hpred = t
                    break
#      import pdb;pdb.set_trace(); #for debug
            with open('tmp/msp.plt', 'w') as fp:
                fp.write(
                    'set grid;set title "Recursive MultiStep Pred: T={} N={} seed={} Tpinv={} H={}(Ey{})"\n'
                    .format(T, n_units, s_bag, Tpinv, hpred, tpEy))
                fp.write(
                    'set term postscript eps enhanced color;set output "tmp/msp.eps"\n'
                )
                fp.write(
                    'plot "{}" using 2:3 w l t "y","" using 2:1 w l t "yp", "" using 2:($1-$3) w l t "yp-y"\n'
                    .format(fnpred0))
            my_misc.myshell('gnuplot tmp/msp.plt')
            my_misc.myshell('gv tmp/msp.eps&')
            elapsed_time1 = time.time() - starttime
            mes = '[{},{}]({:.1f}s) #[T,Tpinv] k{} N{} b{}a{}s{}m{} nop{} t{}H{}'.format(
                T, Tpinv, elapsed_time1, k, n_units, b_bag, a_bag, s_bag,
                m_cpu, nop, args.t, hpred)
            print('{}'.format(mes))
            #      import pdb;pdb.set_trace(); #for debug
            quit()
    #######################################
    elif data_class == 'reg':  #regression function-approximation
        train0 = xp.array(
            pd.read_csv(fntrain0,
                        delim_whitespace=True,
                        dtype=xpfloat,
                        header=None))
        if fntest0 != '/dev/null':
            test0 = xp.array(
                pd.read_csv(fntest0,
                            delim_whitespace=True,
                            dtype=xpfloat,
                            header=None))
            n_test0 = test0.shape[0]
        else:
            n_test0 = 0
        n_train0, k1 = train0.shape
        k = k1 - 1
        Itrain0 = [i for i in range(len(train0))]
        n_train = bagsize = int(n_train0 * a_bag)
        prob = xp.ones((n_train0)) * 1. / n_train0  #same probability

        if n_Folds <= 0:  #single CAN2
            cmdj = 'python can2.py -fn {},{},{} {}'.format(
                fntrain0, fntest0, fnpred0, cmd_can2)
            cmd.append(cmdj)
        else:  ## if n_Folds<=0: #bagging CAN2
            nc = xp.zeros((n_train0, n_Folds))  #
            fnpred = []
            for j in range(n_Folds):
                Itrain_Foldj = xp.random.choice(
                    Itrain0, size=n_train, p=prob)  #functions as walkeralias
                #  Itrain_Fold.append(Itrain_Foldj) #involves duplicated elements
                #  trainj.append(train0[Itrain_Fold,:].reshape((-1,k1)))
                #  testj.append(train0[Itest_Fold,:].reshape((-1,k1)))
                #  import pdb;pdb.set_trace(); #for debug
                #   print('#j={}'.format(j))
                fntrainj = 'tmp/train{:02d}.dat'.format(j)
                #testj=train0[Itrain_Fold[-1],:].reshape((-1,k1))
                #    import pdb;pdb.set_trace(); #for debug
                df = pd.DataFrame(train0[Itrain_Foldj, :].reshape((-1, k1)))
                df.to_csv(fntrainj,
                          index=False,
                          sep=' ',
                          header=None,
                          float_format='%.7e')
                fntestj = 'tmp/test{:02d}.dat'.format(j)
                if fntest0 == '/dev/null':  #out-of-bag prediction
                    Itest_Foldj = list(set(Itrain0) - set(Itrain_Foldj))
                    #        Itest_Fold.append(Itest_Foldj)
                    testj = train0[Itest_Foldj, :].reshape((-1, k1))
                    nc[Itest_Foldj, j] = 1  #
                    n_pred = n_train0
                else:
                    testj = test0
                    n_pred = n_test0
                df = pd.DataFrame(testj)
                df.to_csv(fntestj,
                          index=False,
                          sep=' ',
                          header=None,
                          float_format='%.7e')
                fnpredj = 'tmp/{}-{}+{}+b{}a{}s{}N{}k{}j{}.dat'.format(
                    fn2dbe(fnpred0)[1],
                    fn2dbe(fntrain0)[1],
                    fn2dbe(fntest0)[1], n_Folds, a_bag, s_bag, n_units, k, j)
                #    fn.append([fntrainj,fntestj,fnpredj])
                fnpred.append(fnpredj)
                cmdj = 'python can2.py -fn {},{},{} {}'.format(
                    fntrainj, fntestj, fnpredj, cmd_can2)
                cmd.append(cmdj)
        #  import pdb;pdb.set_trace(); #for debug
        ###############
        #  execution of learning
        ###############
        starttime = time.time()
        with concurrent.futures.ProcessPoolExecutor(m_cpu) as excuter:
            #  with concurrent.futures.ProcessPoolExecutor(max_workers=multi.cpu_count()) as excuter:
            result_list = list(excuter.map(myshell, cmd))
        elapsed_time = time.time() - starttime
        #  print('#Elapled time={}'.format(elapsed_time))
        ###############
        #  execution of ensemble
        ###############
        ypbag = xp.zeros((n_pred, n_Folds), dtype=xpfloat)
        if fntest0 != '/dev/null':  #not out-of-bag
            for j, fnpredj in enumerate(fnpred):
                ypbag[:, j] = xp.array(
                    pd.read_csv(fnpredj,
                                delim_whitespace=True,
                                dtype=str,
                                header=None))[:, 0].astype('float64')
            yp = xp.mean(ypbag, axis=1)
            mse = xp.var(yp - test0[:, -1])
        else:  #out-of-bag
            for j, fnpredj in enumerate(fnpred):
                ypj = xp.array(
                    pd.read_csv(fnpredj,
                                delim_whitespace=True,
                                dtype=str,
                                header=None))[:, 0].astype('float64')
                ncj = nc[:, j]
                Ipredj = xp.where(ncj == 1)[0]
                ypbag[Ipredj, j] = ypj
    #      ypbag[Itest_Fold[j],j]=ypj
    #      import pdb;pdb.set_trace(); #for debug
            yp = xp.zeros((n_pred), dtype=xpfloat)
            for i in range(n_pred):
                nci = nc[i, :]
                Ipredi = xp.where(nci == 1)[0]
                yp[i] = xp.mean(ypbag[i, Ipredi], axis=0)
            mse = xp.var(yp - train0[:, -1])
    #      import pdb;pdb.set_trace(); #for debug

        df = pd.DataFrame(yp)
        df.to_csv(fnpred0,
                  index=False,
                  sep=' ',
                  header=None,
                  float_format='%.7e')
        elapsed_time1 = time.time() - starttime
        mes = '[{},{}]({:.1f}s) {:.3e} #[T,Tpinv] MSE n{},{} k{} N{} b{} a{} s{} m{} seed{} nop{}'.format(
            T, Tpinv, elapsed_time1, mse, n_train0, n_test0, k, n_units, b_bag,
            a_bag, s_bag, m_cpu, seed, nop)
        print('{}'.format(mes))
        quit()
예제 #3
0
파일: sim.py 프로젝트: Kurogi-Lab/CAN2
def calc_MSE(t,test,net,givendata):
  test['y'][t],y,test['Y'][t]=my_plinn.calc_output(net, test['x'][t])
  test['e'][t] = (test['Y'][t]-givendata['Y'][t])
  e2=(test['e'][t])**2
  return e2
예제 #4
0
파일: sim.py 프로젝트: Kurogi-Lab/CAN2
def exec_msp_test(net, givendata,test,args): 
  k=n_channels=net['k']
  k1=k+1 #net['k1'] #
  n_total=givendata['n_total']
  n_train=givendata['n_train']
  n_test=givendata['n_test']
#  tr0=givendata['tr0']
  tr1=givendata['tr1']
  tp0=givendata['tp0']
  tp1=givendata['tp1']
  tpD=givendata['tpD']
  tpG=givendata['tpG']

  test=copy.deepcopy(givendata)
  t0=n_train=givendata['n_train'] #t0=n_train indicates the first time for prediction
  test['x'][t0,:]=givendata['x'][t0,:] #no-need ? already set in load_data ?
#  test['x'][t0,:]=copy.deepcopy(givendata['x'][t0,:]) #no-need ? already set in load_data ?
#  test['x'][t0-1,0:k]=givendata['x'][t0,0:k] #no-need ? already set in load_data ?
#  test['x'][t0,0]=givendata['x'][t0,0] #no-need ? already set in load_data ?
  netc=xp.zeros((n_total),dtype=xp.int32)
  starttime = time.time()
  for t in range(t0,n_total):
#    import pdb;pdb.set_trace() #for debug 
#    test['x'][t,1:k]=test['x'][t-1,0:k-1]
    test['y'][t,0],y,test['Y'][t,0]=my_plinn.calc_output(net,test['x'][t,:],test['x'][t,:k]) 
#    yrt,yt,Yt=my_plinn.calc_output2_(net,test['x'][t,:],test['x'][t,:k]) 
#    yrt,yt,Yt=yrt[0],yt[0],Yt[0]
#    test['y'][t],y,test['Y'][t]=yrt[0],yt[0],Yt[0]
#    netc[t]=net['c']
    netc[t]=net['c'][0] #for calc_output2_
#    import pdb;pdb.set_trace() #for debug 
    # 次の時刻での入力データを準備
#########after 20190120 (no use tpG) from here
#####    if tpD == 0 and t+1 < n_total: #non recursive one-step ahead prediction
#####        test['x'][t+1,0]=givendata['x'][t+1,0]
#####    elif t+tpD<n_total:#recursive tpD-step ahead prediction
#####      if t-n_train < tr1-tp0:#use given data if exists
#####
######    import pdb;pdb.set_trace() #for debug 
#####        test['x'][t+tpD,0]=test['y'][t,0] #for check
######        test['x'][t+tpD+1,0]=givendata['x'][t+tpD+1,0]
#####      else: #elif t+tpD+1<n_total:
#####        test['x'][t+tpD,0]=test['y'][t,0]
######        print test['x'][t+tpD+1,0],test['y'][t,0], test['x'][t+tpD+1,0]==test['y'][t,0]
######        import pdb;pdb.set_trace() #for debug 
######        test['x'][t+tpD+1,0]=givendata['x'][t+tpD+1,0] #for check
#########after 20190120 (no use tpG) to here

####before 20190120 from here
    if tpG <0 and t+tpD < n_total: #non recursive one-step ahead prediction
        test['x'][t+tpD,0]=givendata['x'][t+1,0]
    elif t+tpD+1<n_total:#recursive tpD-step ahead prediction
      if t-n_train < tr1-tp0:#use given data if exists
#    import pdb;pdb.set_trace() #for debug 
        test['x'][t+tpD,0]=test['y'][t,0] #for check
#        test['x'][t+tpD+1,0]=givendata['x'][t+tpD+1,0]
      else: #elif t+tpD+1<n_total:
        test['x'][t+tpD,0]=test['y'][t,0]
#        print test['x'][t+tpD+1,0],test['y'][t,0], test['x'][t+tpD+1,0]==test['y'][t,0]
#        import pdb;pdb.set_trace() #for debug 
#        test['x'][t+tpD+1,0]=givendata['x'][t+tpD+1,0] #for check
####before 20190120 to here

    if t+1 < n_total:
      test['x'][t+1,1:k]=test['x'][t,0:k-1]

#    test['x'][t+1,1:k1]=BIAS #no-need ? already set in load_data ?
  elapsed_time = time.time() - starttime
  testerr=abs(test['Y'][n_train:n_total]-givendata['Y'][n_train:n_total])
  net['hpred']=len(testerr)
  for t in range(len(testerr)):
    if testerr[t]>net['tpEy']:
      net['hpred']=t
      break
#  import pdb;pdb.set_trace() #for debug 
  net['mes']='{} t{}H{} predTime{:.3f}s'.format(net['mes'],args.t,net['hpred'],elapsed_time)
#  net['mes']='{} tp{}-{}H{}(Ey{}) predTime{:.3f}s'.format(net['mes'],tp0,tp1,net['hpred'],net['tpEy'],elapsed_time)
  mo=xp.concatenate((test['Y'][n_train:n_total].astype(str).reshape((-1,1)),xp.array([t for t in range(tp0+tpD,tp1+tpD)],dtype=str).reshape((-1,1))),axis=1)
  mo=xp.concatenate((mo,givendata['Y'][n_train:n_total].astype(str).reshape((-1,1))),axis=1)#pred ts, time
  mo=xp.concatenate((mo,test['y'][n_train:n_total].astype(str).reshape((-1,1))),axis=1) #given ts
  mo=xp.concatenate((mo,(test['Y'][n_train:n_total]-givendata['Y'][n_train:n_total]).astype(str).reshape((-1,1))),axis=1)#err
#  mo=xp.concatenate((mo,abs(test['Y'][n_train:n_total]-givendata['Y'][n_train:n_total]).astype(str).reshape((-1,1))),axis=1)#err
#  mo=xp.concatenate((mo,xp.zeros((n_test),dtype=str).reshape((-1,1))),axis=1) #zero ??
  mo=xp.concatenate((mo,netc[n_train:n_total].astype(str).reshape((-1,1))),axis=1) #unit number selected
  df=pd.DataFrame(mo)
  df.to_csv("msp.dat",index=False,sep=' ',header=None)
#  df=pd.DataFrame(test['x'][n_train:n_total])
#  df.to_csv("xtest.dat",index=False,sep=' ',header=None)
  if net['DISP']>0:
    import my_misc
    with open('tmp/msp.plt','w') as fp:
      fp.write('set grid;set title "Recursive MultiStep Pred: T={} N={} seed={} Tpinv={} H={}(Ey{})"\n'.format(net['i_times'],net['n_cells'],net['seed'],net['Tpinv'],net['hpred'],net['tpEy']))
      fp.write('set term postscript eps enhanced color;set output "tmp/msp.eps"\n')
      fp.write('plot "msp.dat" using 2:3 w l t "y","" using 2:1 w l t "yp", "" using 2:($1-$3) w l t "yp-y"\n')
    my_misc.myshell('gnuplot tmp/msp.plt')
    my_misc.myshell('gv tmp/msp.eps&')
예제 #5
0
파일: ensrs1.py 프로젝트: Kurogi-Lab/CAN2
        #  execution of ensemble
        ###############
        n_pred = tp1 - tp0
        ypbag = xp.zeros((n_pred, n_Folds), dtype=xpfloat)
        yp = xp.zeros((k + n_pred), dtype=xpfloat)
        yp[0:k] = y0[tp0 - k:tp0]
        #t=0 or tp0
        X = xp.zeros((1, k1), dtype=xpfloat)
        X[0, k] = 1  #yp[t+k+tpD-1] #dummy?
        for t in range(0, n_pred):
            X[0, :k] = yp[
                t:t +
                k][::
                   -1]  #reverse y(t)= M(0)*y(t-1)+...+M(k-1)*y(t-k)...+ Mk*BIAS
            for j in range(n_Folds):
                y1, y2, ypbag[t, j] = my_plinn.calc_output(
                    net[j], X[0, :], X[0, :k])
            yp[t + k] = xp.mean(ypbag[t, :])
#      import pdb;pdb.set_trace(); #for debug
        mo = xp.concatenate((yp[k:].astype(str).reshape((-1, 1)),
                             xp.array([t for t in range(tp0 + tpD, tp1 + tpD)],
                                      dtype=str).reshape((-1, 1))),
                            axis=1)
        mo = xp.concatenate((mo, y0[tp0:tp1].astype(str).reshape((-1, 1))),
                            axis=1)
        df = pd.DataFrame(mo)
        df.to_csv(fnpred0, index=False, sep=' ', header=None)
        #    import pdb;pdb.set_trace(); #for debug
        if 1 == 1:  #net['DISP']>0:
            import my_misc
            hpred = n_pred
            for t in range(n_pred):
예제 #6
0
def exec_msp_test(net, givendata, test, args):
    k = n_channels = net['k']
    k1 = k + 1  #net['k1'] #
    n_total = givendata['n_total']
    n_train = givendata['n_train']
    n_test = givendata['n_test']
    #  tr0=givendata['tr0']
    tr1 = givendata['tr1']
    tp0 = givendata['tp0']
    tp1 = givendata['tp1']
    tpD = givendata['tpD']
    tpG = givendata['tpG']

    test = copy.deepcopy(givendata)
    t0 = n_train = givendata[
        'n_train']  #t0=n_train indicates the first time for prediction
    test['x'][t0, :] = givendata['x'][
        t0, :]  #no-need ? already set in load_data ?
    #  test['x'][t0,:]=copy.deepcopy(givendata['x'][t0,:]) #no-need ? already set in load_data ?
    #  test['x'][t0-1,0:k]=givendata['x'][t0,0:k] #no-need ? already set in load_data ?
    #  test['x'][t0,0]=givendata['x'][t0,0] #no-need ? already set in load_data ?
    netc = xp.zeros((n_total), dtype=xp.int32)
    starttime = time.time()
    for t in range(t0, n_total):
        #    import pdb;pdb.set_trace() #for debug
        #    test['x'][t,1:k]=test['x'][t-1,0:k-1]
        test['y'][t, 0], y, test['Y'][t, 0] = my_plinn.calc_output(
            net, test['x'][t, :], test['x'][t, :k])
        #    yrt,yt,Yt=my_plinn.calc_output2_(net,test['x'][t,:],test['x'][t,:k])
        #    yrt,yt,Yt=yrt[0],yt[0],Yt[0]
        #    test['y'][t],y,test['Y'][t]=yrt[0],yt[0],Yt[0]
        #    netc[t]=net['c']
        netc[t] = net['c'][0]  #for calc_output2_
        #    import pdb;pdb.set_trace() #for debug
        # 次の時刻での入力データを準備
        if tpG != 0 and t + 1 < n_total:  #non recursive one-step ahead prediction
            test['x'][t + 1, 0] = givendata['x'][t + 1, 0]
        elif t + tpD + 1 < n_total:  #recursive tpD-step ahead prediction
            if t - n_train < tr1 - tp0:  #use given data if exists
                #    import pdb;pdb.set_trace() #for debug
                test['x'][t + tpD + 1, 0] = test['y'][t, 0]  #for check
#        test['x'][t+tpD+1,0]=givendata['x'][t+tpD+1,0]
            else:  #elif t+tpD+1<n_total:
                test['x'][t + tpD + 1, 0] = test['y'][t, 0]
#        print test['x'][t+tpD+1,0],test['y'][t,0], test['x'][t+tpD+1,0]==test['y'][t,0]
#        import pdb;pdb.set_trace() #for debug
#        test['x'][t+tpD+1,0]=givendata['x'][t+tpD+1,0] #for check
        if t + 1 < n_total:
            test['x'][t + 1, 1:k] = test['x'][t, 0:k - 1]

#    test['x'][t+1,1:k1]=BIAS #no-need ? already set in load_data ?
    elapsed_time = time.time() - starttime
    testerr = abs(test['Y'][n_train:n_total] - givendata['Y'][n_train:n_total])
    net['hpred'] = len(testerr)
    for t in range(len(testerr)):
        if testerr[t] > net['tpEy']:
            net['hpred'] = t
            break
#  import pdb;pdb.set_trace() #for debug
    net['mes'] = '{} H{}(Ey{}) predTime{:.3f}s'.format(net['mes'],
                                                       net['hpred'],
                                                       net['tpEy'],
                                                       elapsed_time)
    mo = xp.concatenate((test['Y'][n_train:n_total].astype(str).reshape(
        (-1, 1)), xp.array([t for t in range(tp0 + tpD, tp1 + tpD)],
                           dtype=str).reshape((-1, 1))),
                        axis=1)
    mo = xp.concatenate(
        (mo, givendata['Y'][n_train:n_total].astype(str).reshape((-1, 1))),
        axis=1)  #pred ts, time
    mo = xp.concatenate((mo, test['y'][n_train:n_total].astype(str).reshape(
        (-1, 1))),
                        axis=1)  #given ts
    mo = xp.concatenate(
        (mo, (test['Y'][n_train:n_total] -
              givendata['Y'][n_train:n_total]).astype(str).reshape((-1, 1))),
        axis=1)  #err
    #  mo=xp.concatenate((mo,abs(test['Y'][n_train:n_total]-givendata['Y'][n_train:n_total]).astype(str).reshape((-1,1))),axis=1)#err
    #  mo=xp.concatenate((mo,xp.zeros((n_test),dtype=str).reshape((-1,1))),axis=1) #zero ??
    mo = xp.concatenate((mo, netc[n_train:n_total].astype(str).reshape(
        (-1, 1))),
                        axis=1)  #unit number selected
    df = pd.DataFrame(mo)
    df.to_csv("msp.dat", index=False, sep=' ', header=None)
예제 #7
0
파일: can2main.py 프로젝트: Kurogi-Lab/CAN2
def main(args):
    ##########################
    ####### Initialize
    ##########################
    set_random_seed(args.seed)
    givendata = {}
    test = {}
    net = {}
    ###
    net['seed'] = args.seed
    net['Tpinv'] = args.Tpinv
    net['pinvflag'] = 0
    net['NDS'] = -0.5
    net['modify_M_batch'] = my_plinn.modify_M_batch_RLS if args.pinv == 0 else my_plinn.modify_M_batch_pinv
    net['nop'] = args.nop
    net['print'] = my_misc.print1 if args.nop == 0 else my_misc.noprint
    #
    _k = map(int, args.k.split(','))
    if len(_k) >= 2:
        k1, k2 = _k
    else:
        k1 = _k[0]
        k2 = 0
    k = k1 + k2
    net['k'] = k
    fntest = '/dev/null'
    fnpred = 'tmp/predict.dat'
    fn = args.fn.split(',')
    fntrain = fn[0]
    if len(fn) >= 2:
        fntest = fn[1]
        if len(fn) >= 3:
            fnpred = fn[2]
#  import pdb;pdb.set_trace(); #for debug
    if args.t == '':
        net['data_class'] = 'reg'  #regression or function approximation
    else:
        net['data_class'] = 'ts'  #time_series

    if args.fnl == '':  #no net to be loaded
        net['fntrain'] = fntrain
        net['fntest'] = fntest
        net['fnpred'] = fnpred
        net['BIAS'] = args.BIAS
        net['r1'], net['r2'], net['r3'] = map(int, args.r.split(','))
        net['DISP'] = args.DISP
        net['ytrans'] = args.ytrans
        net['xtrans'] = args.xtrans
        net['t'] = args.t
        ##########################
        ####### Load data (traininig and test)
        ##########################
        #    my_function.load_data(givendata,test,net) # load_data() in my_function.c
        givendata, test, net = my_function.load_data(
            givendata, test, net)  # load_data() in my_function.c
        #use net['k'],net['fntrain'],net['BIAS'],net['data_class],net['DiffMode']
        #net['t'], net['ymax']-net['ymin']
        net['print']('Finish load_data.')
        ##########################
        ####### Initialize Net
        ##########################
        my_plinn.init_net(net, args)  # init_net() in my_plinn.c
        net['print']('Finish init_net.')
        ##########################
        ####### Execute training-and-test, or single step prediction
        ##########################
        #  import pdb;pdb.set_trace(); #for debug
        if args.ex != '':  #learning only when no net-load
            sim.exec_sim(
                net, givendata, test,
                args)  # sim.py, exec_sim(net, givendata, test) in sim.c
    #
    else:  # net-load: else if args.fnl=='':
        net = my_plinn.net_load(args)
        net['fntrain'] = fntrain
        net['fntest'] = fntest
        net['fnpred'] = fnpred
        net['t'] = args.t
        net['mes'] = ''
        k = net['k']
        #    import pdb;pdb.set_trace(); #for debug
        givendata, test, net = my_function.load_data(
            givendata, test, net)  # load_data() in my_function.c
#    import pdb;pdb.set_trace(); #for debug
#    test=xp.array(pd.read_csv(fntest,delim_whitespace=True,dtype=xpfloat,header=None))
#    normalize_data(test,net)
#  import pdb;pdb.set_trace(); #for debug
#    if args.DISP>0: #disp result
#      if k <= 2:
#        my_misc.myshell('export fntest={} fnpred={};../sh/show{}dpred.sh&'.format(fntest,fnpred,min(givendata['k'],2)))
#      else:
#        fp=open('tmp/predict.plt','w')
#        fp.write('set grid;set title "Regression: T={} N={} seed={} Tpinv={}"\n'.format(net['i_times'],net['n_cells'],net['seed'],net['Tpinv']))
#        fp.write('set term postscript eps enhanced color;set output "tmp/predict.eps"\n')
#        fp.write('plot "{}" using 2:3 w l t "y","" using 2:1 w l t "yp", "" using 2:($1-$3) w l t "yp-y"\n'.format(fnpred))
#        fp.close()
#        my_misc.myshell('gnuplot tmp/predict.plt;gv tmp/predict.eps&')

    if net['data_class'] == 'ts':  #time-series
        #   test=copy.deepcopy(givendata)
        #    import pdb;pdb.set_trace(); #for debug
        sim.exec_msp_test(net, givendata, test, args)
#  elif args.ex!='': #??
#   sim.exec_ssp_test(net, givendata, test)
    elif args.fnl != '':
        t = 0
        n_train = 0
        #    import pdb;pdb.set_trace(); #for debug
        test['y'][t, 0], y, test['Y'][t, 0] = my_plinn.calc_output(
            net, test['x'][t, :], test['x'][t, :k])
        with open(net['fnpred'], 'w') as fp:
            fp.write('%.7e %d %.7e %.7e %.7e %.7e #Y^,t,Y,y,c,e2\n' %
                     (test['Y'][t], t - n_train + 1, givendata['Y'][t],
                      test['y'][t], net['c'][t], (test['e'][t])**2))
##
###########
##########################
####### Save results
##########################
#  import pdb;pdb.set_trace(); #for debug
    print(net['mes'])
    #
    fnlst = []
    if args.fns != '':
        fnlst.append(args.fns)
        my_plinn.net_save(net, args.fns)
        #
        fn = 'tmp/V.txt'
        fnlst.append(fn)
        fp = open(fn, 'w')
        for i in xrange(net['n_cells']):
            fp.write('V{} {}'.format(i, net['V']['ij2t'][i]))
        fp.close()

        fn = 'tmp/w.csv'
        df = pdDataFrameGpu(net['w'], args.gpu)
        df.to_csv(fn, index=False, sep=' ', header=None, float_format='%.7e')
        fnlst.append(fn)
        fn = 'tmp/M.csv'
        df = pdDataFrameGpu(
            net['am']['M'].reshape((net['n_cells'], net['n_channels'] + 1)),
            args.gpu)
        df.to_csv(fn, index=False, sep=' ', header=None, float_format='%.7e')
        fnlst.append(fn)
        fn = 'tmp/v.csv'
        df = pdDataFrameGpu(net['v'], args.gpu)
        df.to_csv(fn, index=False, sep=' ', header=None)
        fnlst.append(fn)

##
#  import pdb;pdb.set_trace(); #for debug
    if 'MSE' in test.keys():  #if args.ex!='':
        if args.DISP > 0:  #disp result
            fn = 'tmp/mse.csv'
            df = pd.DataFrame(test['MSE'])
            df.to_csv(fn,
                      index=False,
                      sep=' ',
                      header=None,
                      float_format='%.7e')
            fnlst.append(fn)
            #    fp=open('tmp/mse.plt','w')
            with open('tmp/mse.plt', 'w') as fp:
                fp.write(
                    'set grid;set title "T={} N={} seed={} Tpinv={}"\n'.format(
                        net['i_times'], net['n_cells'], net['seed'],
                        net['Tpinv']))
                fp.write(
                    'set term postscript eps enhanced color;set output "tmp/mse.eps"\n'
                )
                fp.write('set logscale y;set format y "%.1e"\n')
                ## fp.write('set format y"10^{%L}\n') ##
                fp.write('set ytics format "%.1t{/Symbol=12 \264}10^{%T}"\n')
                fp.write(
                    'plot "tmp/mse.csv" using 0:1 w lp t "MSEtr","" using 0:2 w lp t "MSE"\n'
                )
                fp.write(
                    'set term postscript eps enhanced color;set output "tmp/nmse.eps"\n'
                )
                fp.write(
                    'plot "tmp/mse.csv" using 0:3 w lp t "NMSEtr","" using 0:4 w lp t "NMSE";quit\n'
                )
#    fp.close()
            my_misc.myshell('gnuplot tmp/mse.plt')
            my_misc.myshell('gv tmp/mse.eps&')
##

    net['print']('#saved in {}'.format(fnlst))