def view_neurons(load_model_name='models/chap_15_3_3.ckpt'): restore_saver = tf.train.Saver() with tf.Session() as sess: restore_saver.restore(sess, load_model_name) weights1_val = weights1.eval() weights1_imgs = weights1_val.T[:6].reshape(6, 28, 28) show_multi_image(2, 3, weights1_imgs)
def show_reconstructed_images(images_for_view): # show n_rows = len(images_for_view) n_cols = images_for_view[0].shape[0] concated_images = np.concatenate(images_for_view, axis=0).reshape(n_rows * n_cols, 28, 28) show_multi_image(n_rows, n_cols, concated_images)
def predict(images, load_model_name='models/chap_15_3_3.ckpt'): restore_saver = tf.train.Saver() with tf.Session() as sess: restore_saver.restore(sess, load_model_name) reconstructed_images = outputs.eval(feed_dict={x: images}) # show concated_images = np.concatenate([images, reconstructed_images], axis=0).reshape(images.shape[0] * 2, 28, 28) show_multi_image(2, images.shape[0], concated_images)