import my_utils.loadDataset as dl # create dataloader for selected dataset import my_utils.loadModel as lm # facilitate loading and manipulating models import my_utils.trainModel as tm # Facilitate training of the model import my_utils.initialize_pruning as ip # Initialize and provide basic parmeter require for pruning import my_utils.facilitate_pruning as fp # Compute Pruning Value and many things # In[2]: Set the data loader to load the data for selected dataset dl.setFolderLocation(datasets='/home/pragnesh/Dataset/', selectedDataset='IntelIC/', train='train', test='test') # set the imge properties dl.setImageSize(224) dl.setBatchSize = 16 dataLoaders = dl.dataLoader() # In[3]:load the saved model if have any and if dont load a standard model loadModel = True if loadModel: load_path = "/home/pragnesh/Dataset/Intel_Image_Classifacation_v2/Model/VGG_IntelIC_v1-vgg16" device1 = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") newModel = torch.load(load_path, map_location=torch.device(device1)) else: #if dont have any saved trained model download pretrained model for tranfer learning newmodel = lm.load_model(model_name='vgg16', number_of_class=6, pretrainval=False, freeze_feature=False, device_l=device1)
# In[1]: import my_utils.loadDataset as dl import my_utils.loadModel as lm import my_utils.trainModel as tm import torch # In[2]: dl.setFolderLocation(datasets='/home/pragnesh/Dataset/', selectedDataset='IntelIC/', train='train', test='test') dl.setImageSize(224) dl.setBatchSize = 2 dataLoader = dl.dataLoader() # In[3]: device1 = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device1) newmodel = lm.loadModel(modelname='vgg16', numberOfClass=6, pretrainval=False, freezeFeature=False, device=device1) # In[ ]: print(newmodel.features[0]._parameters)