예제 #1
0
def benchmark_train(args):
    cfg = setup(args)
    model = build_model(cfg)
    logger.info("Model:\n{}".format(model))
    if comm.get_world_size() > 1:
        model = DistributedDataParallel(model,
                                        device_ids=[comm.get_local_rank()],
                                        broadcast_buffers=False)
    optimizer = build_optimizer(cfg, model)
    checkpointer = DetectionCheckpointer(model, optimizer=optimizer)
    checkpointer.load(cfg.MODEL.WEIGHTS)

    cfg.defrost()
    cfg.DATALOADER.NUM_WORKERS = 0
    data_loader = build_detection_train_loader(cfg)
    dummy_data = list(itertools.islice(data_loader, 100))

    def f():
        data = DatasetFromList(dummy_data, copy=False)
        while True:
            yield from data

    max_iter = 400
    trainer = SimpleTrainer(model, f(), optimizer)
    trainer.register_hooks([
        hooks.IterationTimer(),
        hooks.PeriodicWriter([CommonMetricPrinter(max_iter)])
    ])
    trainer.train(1, max_iter)
예제 #2
0
    def __init__(self, cfg):
        self.cfg = cfg.clone()  # cfg can be modified by model
        self.model = build_model(self.cfg)
        self.model.eval()
        self.metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0])

        checkpointer = DetectionCheckpointer(self.model)
        checkpointer.load(cfg.MODEL.WEIGHTS)

        self.transform_gen = T.ResizeShortestEdge(
            [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST],
            cfg.INPUT.MAX_SIZE_TEST)

        self.input_format = cfg.INPUT.FORMAT
        assert self.input_format in ["RGB", "BGR"], self.input_format
예제 #3
0
def get(config_path, trained: bool = False):
    """
    Get a model specified by relative path under mydl's official ``configs/`` directory.

    Args:
        config_path (str): config file name relative to mydl's "configs/"
            directory, e.g., "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml"
        trained (bool): If True, will initialize the model with the trained model zoo weights.
            If False, the checkpoint specified in the config file's ``MODEL.WEIGHTS`` is used
            instead; this will typically (though not always) initialize a subset of weights using
            an ImageNet pre-trained model, while randomly initializing the other weights.

    Example:

    .. code-block:: python

        from mydl import model_zoo
        model = model_zoo.get("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml", trained=True)
    """
    cfg_file = get_config_file(config_path)

    cfg = get_cfg()
    cfg.merge_from_file(cfg_file)
    if trained:
        cfg.MODEL.WEIGHTS = get_checkpoint_url(config_path)
    if not torch.cuda.is_available():
        cfg.MODEL.DEVICE = "cpu"

    model = build_model(cfg)
    DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)
    return model
예제 #4
0
def main(args):
    cfg = setup(args)

    if args.eval_only:
        model = Trainer.build_model(cfg)
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume)
        res = Trainer.test(cfg, model)
        if cfg.TEST.AUG.ENABLED:
            res.update(Trainer.test_with_TTA(cfg, model))
        if comm.is_main_process():
            verify_results(cfg, res)
        return res
    """
    If you'd like to do anything fancier than the standard training logic,
    consider writing your own training loop or subclassing the trainer.
    """
    trainer = Trainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    if cfg.TEST.AUG.ENABLED:
        trainer.register_hooks([
            hooks.EvalHook(0,
                           lambda: trainer.test_with_TTA(cfg, trainer.model))
        ])
    return trainer.train()
예제 #5
0
def benchmark_eval(args):
    cfg = setup(args)
    model = build_model(cfg)
    model.eval()
    logger.info("Model:\n{}".format(model))
    DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)

    cfg.defrost()
    cfg.DATALOADER.NUM_WORKERS = 0
    data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
    dummy_data = list(itertools.islice(data_loader, 100))

    def f():
        while True:
            yield from DatasetFromList(dummy_data, copy=False)

    for _ in range(5):  # warmup
        model(dummy_data[0])

    max_iter = 400
    timer = Timer()
    with tqdm.tqdm(total=max_iter) as pbar:
        for idx, d in enumerate(f()):
            if idx == max_iter:
                break
            model(d)
            pbar.update()
    logger.info("{} iters in {} seconds.".format(max_iter, timer.seconds()))
예제 #6
0
def main(args):
    cfg = setup(args)

    if args.eval_only:
        model = Trainer.build_model(cfg)
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        res = Trainer.test(cfg, model)
        return res

    trainer = Trainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    return trainer.train()
예제 #7
0
    def __init__(self, cfg):
        """
        Args:
            cfg (CfgNode):
        """
        logger = logging.getLogger("mydl")
        if not logger.isEnabledFor(
                logging.INFO):  # setup_logger is not called for d2
            setup_logger()
        # Assume these objects must be constructed in this order.
        model = self.build_model(cfg)
        optimizer = self.build_optimizer(cfg, model)
        data_loader = self.build_train_loader(cfg)

        # For training, wrap with DDP. But don't need this for inference.
        if comm.get_world_size() > 1:
            model = DistributedDataParallel(model,
                                            device_ids=[comm.get_local_rank()],
                                            broadcast_buffers=False)
        super().__init__(model, data_loader, optimizer)

        self.scheduler = self.build_lr_scheduler(cfg, optimizer)
        # Assume no other objects need to be checkpointed.
        # We can later make it checkpoint the stateful hooks
        self.checkpointer = DetectionCheckpointer(
            # Assume you want to save checkpoints together with logs/statistics
            model,
            cfg.OUTPUT_DIR,
            optimizer=optimizer,
            scheduler=self.scheduler,
        )
        self.start_iter = 0
        self.max_iter = cfg.SOLVER.MAX_ITER
        self.cfg = cfg

        self.register_hooks(self.build_hooks())
예제 #8
0
def main(args):
    cfg = setup(args)

    model = build_model(cfg)
    logger.info("Model:\n{}".format(model))
    if args.eval_only:
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        return do_test(cfg, model)

    distributed = comm.get_world_size() > 1
    if distributed:
        model = DistributedDataParallel(
            model, device_ids=[comm.get_local_rank()], broadcast_buffers=False
        )

    do_train(cfg, model)
    return do_test(cfg, model)
예제 #9
0
def do_train(cfg, model, resume=False):
    model.train()
    optimizer = build_optimizer(cfg, model)
    scheduler = build_lr_scheduler(cfg, optimizer)

    checkpointer = DetectionCheckpointer(
        model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler
    )
    start_iter = (
        checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1
    )
    max_iter = cfg.SOLVER.MAX_ITER

    periodic_checkpointer = PeriodicCheckpointer(
        checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
    )

    writers = (
        [
            CommonMetricPrinter(max_iter),
            JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")),
            TensorboardXWriter(cfg.OUTPUT_DIR),
        ]
        if comm.is_main_process()
        else []
    )

    # compared to "train_net.py", we do not support accurate timing and
    # precise BN here, because they are not trivial to implement
    data_loader = build_detection_train_loader(cfg)
    logger.info("Starting training from iteration {}".format(start_iter))
    with EventStorage(start_iter) as storage:
        for data, iteration in zip(data_loader, range(start_iter, max_iter)):
            iteration = iteration + 1
            storage.step()

            loss_dict = model(data)
            losses = sum(loss_dict.values())
            assert torch.isfinite(losses).all(), loss_dict

            loss_dict_reduced = {k: v.item() for k, v in comm.reduce_dict(loss_dict).items()}
            losses_reduced = sum(loss for loss in loss_dict_reduced.values())
            if comm.is_main_process():
                storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced)

            optimizer.zero_grad()
            losses.backward()
            optimizer.step()
            storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)
            scheduler.step()

            if (
                cfg.TEST.EVAL_PERIOD > 0
                and iteration % cfg.TEST.EVAL_PERIOD == 0
                and iteration != max_iter
            ):
                do_test(cfg, model)
                # Compared to "train_net.py", the test results are not dumped to EventStorage
                comm.synchronize()

            if iteration - start_iter > 5 and (iteration % 20 == 0 or iteration == max_iter):
                for writer in writers:
                    writer.write()
            periodic_checkpointer.step(iteration)
예제 #10
0
    parser.add_argument("--output", help="output directory for the converted caffe2 model")
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )
    args = parser.parse_args()
    logger = setup_logger()
    logger.info("Command line arguments: " + str(args))

    cfg = setup_cfg(args)

    # create a torch model
    torch_model = build_model(cfg)
    DetectionCheckpointer(torch_model).resume_or_load(cfg.MODEL.WEIGHTS)

    # get a sample data
    data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
    first_batch = next(iter(data_loader))

    # convert and save caffe2 model
    caffe2_model = export_caffe2_model(cfg, torch_model, first_batch)
    caffe2_model.save_protobuf(args.output)
    # draw the caffe2 graph
    caffe2_model.save_graph(os.path.join(args.output, "model.svg"), inputs=first_batch)

    # run evaluation with the converted model
    if args.run_eval:
        dataset = cfg.DATASETS.TEST[0]
        data_loader = build_detection_test_loader(cfg, dataset)
예제 #11
0
class DefaultTrainer(SimpleTrainer):
    """
    A trainer with default training logic. Compared to `SimpleTrainer`, it
    contains the following logic in addition:

    1. Create model, optimizer, scheduler, dataloader from the given config.
    2. Load a checkpoint or `cfg.MODEL.WEIGHTS`, if exists.
    3. Register a few common hooks.

    It is created to simplify the **standard model training workflow** and reduce code boilerplate
    for users who only need the standard training workflow, with standard features.
    It means this class makes *many assumptions* about your training logic that
    may easily become invalid in a new research. In fact, any assumptions beyond those made in the
    :class:`SimpleTrainer` are too much for research.

    The code of this class has been annotated about restrictive assumptions it mades.
    When they do not work for you, you're encouraged to:

    1. Overwrite methods of this class, OR:
    2. Use :class:`SimpleTrainer`, which only does minimal SGD training and
       nothing else. You can then add your own hooks if needed. OR:
    3. Write your own training loop similar to `tools/plain_train_net.py`.

    Also note that the behavior of this class, like other functions/classes in
    this file, is not stable, since it is meant to represent the "common default behavior".
    It is only guaranteed to work well with the standard models and training workflow in mydl.
    To obtain more stable behavior, write your own training logic with other public APIs.

    Attributes:
        scheduler:
        checkpointer (DetectionCheckpointer):
        cfg (CfgNode):

    Examples:

    .. code-block:: python

        trainer = DefaultTrainer(cfg)
        trainer.resume_or_load()  # load last checkpoint or MODEL.WEIGHTS
        trainer.train()
    """
    def __init__(self, cfg):
        """
        Args:
            cfg (CfgNode):
        """
        logger = logging.getLogger("mydl")
        if not logger.isEnabledFor(
                logging.INFO):  # setup_logger is not called for d2
            setup_logger()
        # Assume these objects must be constructed in this order.
        model = self.build_model(cfg)
        optimizer = self.build_optimizer(cfg, model)
        data_loader = self.build_train_loader(cfg)

        # For training, wrap with DDP. But don't need this for inference.
        if comm.get_world_size() > 1:
            model = DistributedDataParallel(model,
                                            device_ids=[comm.get_local_rank()],
                                            broadcast_buffers=False)
        super().__init__(model, data_loader, optimizer)

        self.scheduler = self.build_lr_scheduler(cfg, optimizer)
        # Assume no other objects need to be checkpointed.
        # We can later make it checkpoint the stateful hooks
        self.checkpointer = DetectionCheckpointer(
            # Assume you want to save checkpoints together with logs/statistics
            model,
            cfg.OUTPUT_DIR,
            optimizer=optimizer,
            scheduler=self.scheduler,
        )
        self.start_iter = 0
        self.max_iter = cfg.SOLVER.MAX_ITER
        self.cfg = cfg

        self.register_hooks(self.build_hooks())

    def resume_or_load(self, resume=True):
        """
        If `resume==True`, and last checkpoint exists, resume from it.

        Otherwise, load a model specified by the config.

        Args:
            resume (bool): whether to do resume or not
        """
        # The checkpoint stores the training iteration that just finished, thus we start
        # at the next iteration (or iter zero if there's no checkpoint).
        self.start_iter = (self.checkpointer.resume_or_load(
            self.cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1)

    def build_hooks(self):
        """
        Build a list of default hooks, including timing, evaluation,
        checkpointing, lr scheduling, precise BN, writing events.

        Returns:
            list[HookBase]:
        """
        cfg = self.cfg.clone()
        cfg.defrost()
        cfg.DATALOADER.NUM_WORKERS = 0  # save some memory and time for PreciseBN

        ret = [
            hooks.IterationTimer(),
            hooks.LRScheduler(self.optimizer, self.scheduler),
            hooks.PreciseBN(
                # Run at the same freq as (but before) evaluation.
                cfg.TEST.EVAL_PERIOD,
                self.model,
                # Build a new data loader to not affect training
                self.build_train_loader(cfg),
                cfg.TEST.PRECISE_BN.NUM_ITER,
            ) if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model)
            else None,
        ]

        # Do PreciseBN before checkpointer, because it updates the model and need to
        # be saved by checkpointer.
        # This is not always the best: if checkpointing has a different frequency,
        # some checkpoints may have more precise statistics than others.
        if comm.is_main_process():
            ret.append(
                hooks.PeriodicCheckpointer(self.checkpointer,
                                           cfg.SOLVER.CHECKPOINT_PERIOD))

        def test_and_save_results():
            self._last_eval_results = self.test(self.cfg, self.model)
            return self._last_eval_results

        # Do evaluation after checkpointer, because then if it fails,
        # we can use the saved checkpoint to debug.
        ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))

        if comm.is_main_process():
            # run writers in the end, so that evaluation metrics are written
            ret.append(hooks.PeriodicWriter(self.build_writers(), period=20))
        return ret

    def build_writers(self):
        """
        Build a list of writers to be used. By default it contains
        writers that write metrics to the screen,
        a json file, and a tensorboard event file respectively.
        If you'd like a different list of writers, you can overwrite it in
        your trainer.

        Returns:
            list[EventWriter]: a list of :class:`EventWriter` objects.

        It is now implemented by:

        .. code-block:: python

            return [
                CommonMetricPrinter(self.max_iter),
                JSONWriter(os.path.join(self.cfg.OUTPUT_DIR, "metrics.json")),
                TensorboardXWriter(self.cfg.OUTPUT_DIR),
            ]

        """
        # Here the default print/log frequency of each writer is used.
        return [
            # It may not always print what you want to see, since it prints "common" metrics only.
            CommonMetricPrinter(self.max_iter),
            JSONWriter(os.path.join(self.cfg.OUTPUT_DIR, "metrics.json")),
            TensorboardXWriter(self.cfg.OUTPUT_DIR),
        ]

    def train(self):
        """
        Run training.

        Returns:
            OrderedDict of results, if evaluation is enabled. Otherwise None.
        """
        super().train(self.start_iter, self.max_iter)
        if len(self.cfg.TEST.EXPECTED_RESULTS) and comm.is_main_process():
            assert hasattr(self, "_last_eval_results"
                           ), "No evaluation results obtained during training!"
            verify_results(self.cfg, self._last_eval_results)
            return self._last_eval_results

    @classmethod
    def build_model(cls, cfg):
        """
        Returns:
            torch.nn.Module:

        It now calls :func:`mydl.modeling.build_model`.
        Overwrite it if you'd like a different model.
        """
        model = build_model(cfg)
        logger = logging.getLogger(__name__)
        logger.info("Model:\n{}".format(model))
        return model

    @classmethod
    def build_optimizer(cls, cfg, model):
        """
        Returns:
            torch.optim.Optimizer:

        It now calls :func:`mydl.solver.build_optimizer`.
        Overwrite it if you'd like a different optimizer.
        """
        return build_optimizer(cfg, model)

    @classmethod
    def build_lr_scheduler(cls, cfg, optimizer):
        """
        It now calls :func:`mydl.solver.build_lr_scheduler`.
        Overwrite it if you'd like a different scheduler.
        """
        return build_lr_scheduler(cfg, optimizer)

    @classmethod
    def build_train_loader(cls, cfg):
        """
        Returns:
            iterable

        It now calls :func:`mydl.data.build_detection_train_loader`.
        Overwrite it if you'd like a different data loader.
        """
        return build_detection_train_loader(cfg)

    @classmethod
    def build_test_loader(cls, cfg, dataset_name):
        """
        Returns:
            iterable

        It now calls :func:`mydl.data.build_detection_test_loader`.
        Overwrite it if you'd like a different data loader.
        """
        return build_detection_test_loader(cfg, dataset_name)

    @classmethod
    def build_evaluator(cls, cfg, dataset_name):
        """
        Returns:
            DatasetEvaluator or None

        It is not implemented by default.
        """
        raise NotImplementedError("""
If you want DefaultTrainer to automatically run evaluation,
please implement `build_evaluator()` in subclasses (see train_net.py for example).
Alternatively, you can call evaluation functions yourself (see Colab balloon tutorial for example).
""")

    @classmethod
    def test(cls, cfg, model, evaluators=None):
        """
        Args:
            cfg (CfgNode):
            model (nn.Module):
            evaluators (list[DatasetEvaluator] or None): if None, will call
                :meth:`build_evaluator`. Otherwise, must have the same length as
                `cfg.DATASETS.TEST`.

        Returns:
            dict: a dict of result metrics
        """
        logger = logging.getLogger(__name__)
        if isinstance(evaluators, DatasetEvaluator):
            evaluators = [evaluators]
        if evaluators is not None:
            assert len(
                cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format(
                    len(cfg.DATASETS.TEST), len(evaluators))

        results = OrderedDict()
        for idx, dataset_name in enumerate(cfg.DATASETS.TEST):
            data_loader = cls.build_test_loader(cfg, dataset_name)
            # When evaluators are passed in as arguments,
            # implicitly assume that evaluators can be created before data_loader.
            if evaluators is not None:
                evaluator = evaluators[idx]
            else:
                try:
                    evaluator = cls.build_evaluator(cfg, dataset_name)
                except NotImplementedError:
                    logger.warn(
                        "No evaluator found. Use `DefaultTrainer.test(evaluators=)`, "
                        "or implement its `build_evaluator` method.")
                    results[dataset_name] = {}
                    continue
            results_i = inference_on_dataset(model, data_loader, evaluator)
            results[dataset_name] = results_i
            if comm.is_main_process():
                assert isinstance(
                    results_i, dict
                ), "Evaluator must return a dict on the main process. Got {} instead.".format(
                    results_i)
                logger.info("Evaluation results for {} in csv format:".format(
                    dataset_name))
                print_csv_format(results_i)

        if len(results) == 1:
            results = list(results.values())[0]
        return results