def fft_ar(R): # imgs = [] # for i in range(R.shape[0]): print("R.shape", R.shape) n_levels = 8 R_thr = -10 h = R.shape[1] w = R.shape[2] print("R[0]") # loga(R[0]) mask_R0 = R[0] >= R_thr mask_R1 = R[1] >= R_thr mask_R2 = R[2] >= R_thr mask_R = mask_R0 * mask_R1 * mask_R2 mask_R = mask_R[0,0].astype(np.float32) res = fft_decompose(R, ar_order=2, n_cascade_levels=n_levels, R_thr=R_thr) out_imgs = [] print(">>> run fft...") # for each level for i in range(0, n_levels): img0 = res[0]["cascade_levels"][i] img1 = res[1]["cascade_levels"][i] img2 = res[2]["cascade_levels"][i] # for each image img0 = np.reshape(img0, (1, 1, h, w)) img1 = np.reshape(img1, (1, 1, h, w)) img2 = np.reshape(img2, (1, 1, h, w)) img0 = torch.from_numpy(img0) img1 = torch.from_numpy(img1) img2 = torch.from_numpy(img2) if use_cuda: img0 = img0.cuda() img1 = img1.cuda() img2 = img2.cuda() # load model corr_module = Corr(allones=True) if use_cuda: corr_module = corr_module.cuda() print("img0", img0.shape) print("img1", img1.shape) print("img2", img2.shape) img3 = corr_module(img0, img1, img2, mask_R) #plt.imshow(img3[0,0]) #plt.show() print(img3.shape) out_imgs.append(img3[0,0]) out = fft_recompose(out_imgs) print("out.shape", out.shape)
img1 = R[1] img2 = R[2] res = fft_decompose(R, ar_order=2, n_cascade_levels=8, R_thr=-10) print(">>> ori img0") #loga(img0) print(res[0].keys()) for i in range(8): img = res[0]["cascade_levels"][i] #plt.imshow(img) #plt.show() R = res[0]["cascade_levels"] print("res[0].keys()", res[0].keys()) out_img = fft_recompose(R) print(">>> out_img") # loga(out_img) print("img0", img0.shape) h = img0.shape[0] w = img0.shape[1] img0 = np.reshape(img0, (1, 1, h, w)) img1 = np.reshape(img1, (1, 1, h, w)) img2 = np.reshape(img2, (1, 1, h, w)) img0 = torch.from_numpy(img0) img1 = torch.from_numpy(img1) img2 = torch.from_numpy(img2) if use_cuda:
def fft_ar(R): # load model # corr_module = Corr(image_level=True) corr_module = Corr(window_size=3, sigma=1) print("R.shape", R.shape) n_levels = 8 R_thr = -10 h = R.shape[1] w = R.shape[2] print("R[0]") # loga(R[0]) mask_R0 = R[0] >= R_thr mask_R1 = R[1] >= R_thr mask_R2 = R[2] >= R_thr mask_R = mask_R0 * mask_R1 * mask_R2 print(">>> mask_R.shape", mask_R.shape) # mask_R = mask_R[0,0].astype(np.float32) # attention here mask_R = mask_R.astype(np.int) mask_R = torch.from_numpy(mask_R) print(">>> mask_R type", type(mask_R)) print(mask_R) res = fft_decompose(R, ar_order=2, n_cascade_levels=n_levels, R_thr=R_thr) print("R.shape", R.shape) print("res.shape", res[0]["cascade_levels"].shape) # origin_img = fft_recompose(res[0]["cascade_levels"]) # plt.imshow(origin_img) # plt.show() # raise ValueError() out_imgs = [] print(">>> run fft...") # for each level for i in range(0, n_levels): img0 = res[0]["cascade_levels"][i] img1 = res[1]["cascade_levels"][i] img2 = res[2]["cascade_levels"][i] # for each image img0 = np.reshape(img0, (1, 1, h, w)) img1 = np.reshape(img1, (1, 1, h, w)) img2 = np.reshape(img2, (1, 1, h, w)) img0 = torch.from_numpy(img0) img1 = torch.from_numpy(img1) img2 = torch.from_numpy(img2) if use_cuda: img0 = img0.cuda() img1 = img1.cuda() img2 = img2.cuda() if use_cuda: corr_module = corr_module.cuda() print(">>> diff") print(torch.sum(torch.abs(img0 - img1))) # print(">>> maskR") # loga(mask_R) # raise ValueError() # print(">>> loga img0, img1, img2") # loga(img0) # loga(img1) # loga(img2) # print("pre mask_R") # loga(mask_R) img3 = corr_module(img0, img1, img2, mask_R) # print("after mask_R") # loga(mask_R) print("img3", img3.shape) print(img3.shape) out_imgs.append(img3[0, 0].data.numpy()) # loga(img3) #shape:(1, 1, 320, 355) type:(float32 of torch.Tensor) max: -5.1484, min: -15.0, mean: -14.286 # raise ValueError() for i in range(8): print("current i = ", i) print(out_imgs[i][56, 192]) # loga(out_imgs[i]) out = fft_recompose(out_imgs) print("out,", out[56, 192]) print("R[0]") # loga(R[0]) vis_radar(R[0], "R0.png") print("R[1]") # loga(R[1]) vis_radar(R[1], "R1.png") print("R[2]") # loga(R[2]) vis_radar(R[2], "R2.png") vis_radar(out, "out.png") print("out.shape", out.shape) print("mask_R.shape", mask_R.shape) # loga(mask_R) # raise ValueError() print("type out", type(out)) mask_R = mask_R.data.numpy() print("type mask_R", type(mask_R)) assert type(out) == type(mask_R) out[mask_R <= 0.5] = -15 # loga(out) vis_radar(out) plt.imshow(out) plt.show() print("out.shape", out.shape)