x_test, y_test, test_num = read_labels_batch_out( labels_path, (224, 224), (224, 224), root_images_folder, batch_size=batch_size, iteration_num=i, random_horizontal_flip=False) if (test_num == 0): break predicts = model.predict(x_test, batch_size=batch_size) for j, value in enumerate(predicts): predict = np.argmax(value) truth_val = y_test[j] confusion_mat.AddValueToConfusionMat(val=predict, label_val=truth_val) file_writer.Write("[[" + str(j + (batch_size * i)) + "]] " + str(truth_val) + " {" + str(predict) + "}") print( "====================================================================") file_writer.Write( "====================================================================") print("result of iteration number : " + str(i)) file_writer.Write("result of iteration number : " + str(i)) print(" ") file_writer.Write(" ") print("---Show Current Score---\n") file_writer.Write("---Show Current Score---\n") print(confusion_mat.PrintConfusionMat()) file_writer.Write(confusion_mat.PrintConfusionMat())
print("---Images Means is Set to Zero---") print("Mean-subtracted values:", zip("BGR", np.array([0, 0, 0]))) else: mu = np.load(means_images_npy_path).mean(1).mean(1) transformer.set_mean('data', mu) #Means From .npy Files print("---Images Means is Set by .npy Files---") print("Mean-subtracted values:", zip("BGR", mu)) net.blobs['data'].reshape(batch_size, image_color_channel, image_size_h, image_size_w) ###################################################################################################### ###################################################################################################### ################################################################################################### file_writer.Write( "====================================================================") print("====================================================================") print("for each layer, show the output shape") file_writer.Write("for each layer, show the output shape") for layer_name, blob in net.blobs.items(): print(layer_name + "\t" + str(blob.data.shape)) file_writer.Write(layer_name + "\t" + str(blob.data.shape)) print("====================================================================") file_writer.Write( "====================================================================") print( "The param shapes typically have the form (output_channels, input_channels, filter_height, filter_width) (for the weights) and the 1-dimensional shape (output_channels,) (for the biases)." ) file_writer.Write( "The param shapes typically have the form (output_channels, input_channels, filter_height, filter_width) (for the weights) and the 1-dimensional shape (output_channels,) (for the biases)."