def test_multiple_dimensional_integer_shift(self): shape = array([2, 2, 3, 2]) x = zeros(shape) x[0, 0, 0, 0] = 1 shift = [] for max_shift in shape: shift.append(randint(max_shift)) xx = mm.circshift(x, shift) i = unravel_index(argmax(xx), x.shape) self.assertListEqual(list(shift), list(i))
def test_upsample_1000(self): img0 = scipy.misc.lena() ny, nx = img0.shape row_shift = (rand() - 0.5)*ny col_shift = (rand() - 0.5)*nx img1 = mm.circshift(img0, (row_shift, col_shift)) val, row, col = mm.register(img0, img1, upsample=105) self.assertAlmostEqual(row, row_shift, places=2) self.assertAlmostEqual(col, col_shift, places=2)
def test_upsample_1000(self): img0 = scipy.misc.lena() ny, nx = img0.shape row_shift = (rand() - 0.5) * ny col_shift = (rand() - 0.5) * nx img1 = mm.circshift(img0, (row_shift, col_shift)) val, row, col = mm.register(img0, img1, upsample=105) self.assertAlmostEqual(row, row_shift, places=2) self.assertAlmostEqual(col, col_shift, places=2)
def setUp(self): img0 = scipy.misc.lena() ny, nx = img0.shape row_shift = randint(-ny/2, ny/2) col_shift = randint(-nx/2, nx/2) img1 = mm.circshift(img0, (row_shift, col_shift)) self.img0 = img0 self.img1 = img1 self.nx = nx self.ny = ny self.col_shift = col_shift self.row_shift = row_shift
def setUp(self): img0 = scipy.misc.lena() ny, nx = img0.shape row_shift = randint(-ny / 2, ny / 2) col_shift = randint(-nx / 2, nx / 2) img1 = mm.circshift(img0, (row_shift, col_shift)) self.img0 = img0 self.img1 = img1 self.nx = nx self.ny = ny self.col_shift = col_shift self.row_shift = row_shift
def test_upsample_1(self): """Test algorithm without subpixel registration.""" img0 = scipy.misc.lena() ny, nx = img0.shape row_shift = randint(-ny/2, ny/2) col_shift = randint(-nx/2, nx/2) row_shift = 10 col_shift = 27 img1 = mm.circshift(img0, (row_shift, col_shift)) img1 = abs(img1) if PLOTTING: subplot(211) imshow(img0) title('original') subplot(212) imshow(img1) title('shifted by {}x{}'.format(row_shift, col_shift)) show() val, row, col = mm.register(img0, img1) self.assertEqual(row, row_shift) self.assertEqual(col, col_shift)
def test_upsample_1(self): """Test algorithm without subpixel registration.""" img0 = scipy.misc.lena() ny, nx = img0.shape row_shift = randint(-ny / 2, ny / 2) col_shift = randint(-nx / 2, nx / 2) row_shift = 10 col_shift = 27 img1 = mm.circshift(img0, (row_shift, col_shift)) img1 = abs(img1) if PLOTTING: subplot(211) imshow(img0) title('original') subplot(212) imshow(img1) title('shifted by {}x{}'.format(row_shift, col_shift)) show() val, row, col = mm.register(img0, img1) self.assertEqual(row, row_shift) self.assertEqual(col, col_shift)
def test_allones(self): N = randint(2, 30) shift = 2*N*rand() x = ones([N]) xx = mm.circshift(x, shift) self.assertArraysClose(x, xx)
def test_single_dim_integer_shift(self): a = arange(6) shift = 1 a_s = around(mm.circshift(a, shift)) self.assertArraysClose(a_s, array([5, 0, 1, 2, 3, 4]))
def test_allones(self): N = randint(2, 30) shift = 2 * N * rand() x = ones([N]) xx = mm.circshift(x, shift) self.assertArraysClose(x, xx)