def infer_function_type_arguments(callee_type: CallableType, arg_types: List[Optional[Type]], arg_kinds: List[int], formal_to_actual: List[List[int]], strict: bool = True) -> List[Type]: """Infer the type arguments of a generic function. Return an array of lower bound types for the type variables -1 (at index 0), -2 (at index 1), etc. A lower bound is None if a value could not be inferred. Arguments: callee_type: the target generic function arg_types: argument types at the call site (each optional; if None, we are not considering this argument in the current pass) arg_kinds: nodes.ARG_* values for arg_types formal_to_actual: mapping from formal to actual variable indices """ # Infer constraints. constraints = infer_constraints_for_callable( callee_type, arg_types, arg_kinds, formal_to_actual) # Solve constraints. type_vars = callee_type.type_var_ids() return solve_constraints(type_vars, constraints, strict)
def infer_function_type_arguments(callee_type: CallableType, arg_types: List[Optional[Type]], arg_kinds: List[int], formal_to_actual: List[List[int]], strict: bool = True) -> List[Type]: """Infer the type arguments of a generic function. Return an array of lower bound types for the type variables -1 (at index 0), -2 (at index 1), etc. A lower bound is None if a value could not be inferred. Arguments: callee_type: the target generic function arg_types: argument types at the call site (each optional; if None, we are not considering this argument in the current pass) arg_kinds: nodes.ARG_* values for arg_types formal_to_actual: mapping from formal to actual variable indices """ # Infer constraints. constraints = infer_constraints_for_callable(callee_type, arg_types, arg_kinds, formal_to_actual) # Solve constraints. type_vars = callee_type.type_var_ids() return solve_constraints(type_vars, constraints, strict)
def infer_type_arguments(type_var_ids: List[int], template: Type, actual: Type, basic: BasicTypes) -> List[Type]: # Like infer_function_type_arguments, but only match a single type # against a generic type. constraints = infer_constraints(template, actual, SUBTYPE_OF) return solve_constraints(type_var_ids, constraints, basic)
def infer_function_type_arguments(callee_type: Callable, arg_types: List[Type], arg_kinds: List[int], formal_to_actual: List[List[int]], basic: BasicTypes) -> List[Type]: """Infer the type arguments of a generic function. Return an array of lower bound types for the type variables -1 (at index 0), -2 (at index 1), etc. A lower bound is None if a value could not be inferred. Arguments: callee_type: the target generic function arg_types: argument types at the call site arg_kinds: nodes.ARG_* values for arg_types formal_to_actual: mapping from formal to actual variable indices basic: references to basic types which are needed during inference """ # Infer constraints. constraints = infer_constraints_for_callable( callee_type, arg_types, arg_kinds, formal_to_actual) # Solve constraints. type_vars = callee_type.type_var_ids() return solve_constraints(type_vars, constraints, basic)
def infer_type_arguments(type_var_ids: List[TypeVarId], template: Type, actual: Type, is_supertype: bool = False) -> List[Optional[Type]]: # Like infer_function_type_arguments, but only match a single type # against a generic type. constraints = infer_constraints(template, actual, SUPERTYPE_OF if is_supertype else SUBTYPE_OF) return solve_constraints(type_var_ids, constraints)
def assert_solve(self, vars, constraints, results): res = [] for r in results: if isinstance(r, tuple): res.append(r[0]) else: res.append(r) actual = solve_constraints(vars, constraints) assert_equal(str(actual), str(res))
def assert_solve(self, vars: List[TypeVarId], constraints: List[Constraint], results: List[Union[Type, Tuple[Type, Type]]], ) -> None: res = [] for r in results: if isinstance(r, tuple): res.append(r[0]) else: res.append(r) actual = solve_constraints(vars, constraints) assert_equal(str(actual), str(res))
def assert_solve(self, vars: List[TypeVarId], constraints: List[Constraint], results: List[Union[None, Type, Tuple[Type, Type]]], ) -> None: res = [] # type: List[Optional[Type]] for r in results: if isinstance(r, tuple): res.append(r[0]) else: res.append(r) actual = solve_constraints(vars, constraints) assert_equal(str(actual), str(res))
BasicTypes basic): """Infer the type arguments of a generic function. Return an array of lower bound types for the type variables -1 (at index 0), -2 (at index 1), etc. A lower bound is None if a value could not be inferred. Arguments: callee_type: the target generic function arg_types: argument types at the call site arg_kinds: nodes.ARG_* values for arg_types formal_to_actual: mapping from formal to actual variable indices basic: references to basic types which are needed during inference """ # Infer constraints. constraints = infer_constraints_for_callable( callee_type, arg_types, arg_kinds, formal_to_actual) # Solve constraints. type_vars = callee_type.type_var_ids() return solve_constraints(type_vars, constraints, basic) Type[] infer_type_arguments(int[] type_var_ids, Type template, Type actual, BasicTypes basic): # Like infer_function_type_arguments, but only match a single type # against a generic type. constraints = infer_constraints(template, actual, SUBTYPE_OF) return solve_constraints(type_var_ids, constraints, basic)
def infer_type_arguments(type_var_ids, template, actual, basic): # Like infer_function_type_arguments, but only match a single type # against a generic type. constraints = infer_constraints(template, actual, SUBTYPE_OF) return solve_constraints(type_var_ids, constraints, basic)