def test_My_Random_Forest_Classifier_predict(): # Object Declarations # Tests with N = 3, M = 2, F = 2 and seed = 1 rand_forest_test = MyRandomForestClassifier(3, 2, 2, 1) table = MyPyTable() # Variable Assignment and Declaration table.data = interview_table table.column_names = interview_header y_train, X_train = [], [] for inst in interview_table: y_train.append(inst[-1]) X_train.append(inst[:-1]) # Sets X_test X_test = [["Junior", "Java", "yes", "no"], ["Junior", "Java", "yes", "yes"]] # Tests on the Interview Dataset rand_forest_test.header = interview_header[:-1] rand_forest_test.fit(X_train, y_train) y_predicted = rand_forest_test.predict(X_test) print("y_predicted:", y_predicted) # Trace Test assert y_predicted == ['True', 'False']
def test_My_Random_Forest_Classifier_fit(): # Object Declarations # Tests with N = 3, M = 2, F = 2 and seed = 0 rand_forest_test = MyRandomForestClassifier(3, 2, 2, 0) table = MyPyTable() # Variable Assignment and Declaration table.data = interview_table table.column_names = interview_header X_test = interview_table y_train = table.get_column("interviewed_well") # Tests on the Interview Dataset rand_forest_test.header = interview_header rand_forest_test.fit(X_test, y_train) trees = rand_forest_test.trees