def draw_contour(): import pylab, numpy x, y = numpy.mgrid[-1:2:0.02,-0.5:2:0.02] c = 0*x s,t = x.shape for i in range(s): for j in range(t): xx,yy = x[i,j], y[i,j] c[i,j] = fOsc3D([xx,yy]) pylab.contourf(x,y,c,100)
def draw_contour(): import pylab, numpy x, y = numpy.mgrid[-1:2:0.02, -0.5:2:0.02] c = 0 * x s, t = x.shape for i in range(s): for j in range(t): xx, yy = x[i, j], y[i, j] c[i, j] = fOsc3D([xx, yy]) pylab.contourf(x, y, c, 100)
def draw_contour(): import matplotlib.pyplot as plt, numpy x, y = numpy.mgrid[-1:2:0.02, -0.5:2:0.02] c = 0 * x s, t = x.shape for i in range(s): for j in range(t): xx, yy = x[i, j], y[i, j] c[i, j] = fOsc3D([xx, yy]) plt.contourf(x, y, c, 100)
def draw_contour(): import matplotlib.pyplot as plt, numpy x, y = numpy.mgrid[-1:2:0.02,-0.5:2:0.02] c = 0*x s,t = x.shape for i in range(s): for j in range(t): xx,yy = x[i,j], y[i,j] c[i,j] = fOsc3D([xx,yy]) plt.contourf(x,y,c,100)
solver.Solve(fOsc3D,termination=ChangeOverGeneration(1e-5, 30), \ strategy=strategy,CrossProbability=1.0,ScalingFactor=0.9) return solver.Solution() if __name__ == '__main__': import pylab from mystic.solvers import fmin #from mystic._scipyoptimize import fmin draw_contour() solution = main() print("solution: %s" % solution) pylab.plot([solution[0]], [solution[1]], 'wo', markersize=10) print("Differential Evolution: Min: %s, sol = %s" % (fOsc3D(solution), solution)) print("\nTrying scipy.optimize.fmin (Nelder-Mead Simplex)...") m = fmin(fOsc3D, [0.1, 0.1]) pylab.plot([m[0]], [m[1]], 'ro', markersize=5) print("solution w/ initial conditions (0.1,0.1): %s\n" % m) m = fmin(fOsc3D, [1, 1]) pylab.plot([m[0]], [m[1]], 'ro', markersize=5) print("solution w/ initial conditions (1,1): %s\n" % m) m = fmin(fOsc3D, [-1, 1]) print("solution w/ initial conditions (-1,1): %s\n" % m) pylab.plot([m[0]], [m[1]], 'ro', markersize=5)
solver.Solve(fOsc3D,termination=ChangeOverGeneration(1e-5, 30), \ strategy=strategy,CrossProbability=1.0,ScalingFactor=0.9) return solver.Solution() if __name__ == '__main__': import pylab from mystic.solvers import fmin #from mystic._scipyoptimize import fmin draw_contour() solution = main() print "solution: ", solution pylab.plot([solution[0]],[solution[1]],'wo',markersize=10) print "Differential Evolution: Min: %s, sol = %s" % (fOsc3D(solution), solution) print "\nTrying scipy.optimize.fmin (Nelder-Mead Simplex)..." m = fmin(fOsc3D, [0.1, 0.1]) pylab.plot([m[0]],[m[1]],'ro',markersize=5) print "solution w/ initial conditions (0.1,0.1): %s\n" % m m = fmin(fOsc3D, [1, 1]) pylab.plot([m[0]],[m[1]],'ro',markersize=5) print "solution w/ initial conditions (1,1): %s\n" % m m = fmin(fOsc3D, [-1, 1]) print "solution w/ initial conditions (-1,1): %s\n" % m pylab.plot([m[0]],[m[1]],'ro',markersize=5)
solver.Solve(fOsc3D,termination=ChangeOverGeneration(1e-5, 30), \ strategy=strategy,CrossProbability=1.0,ScalingFactor=0.9) return solver.Solution() if __name__ == '__main__': import pylab from mystic.solvers import fmin #from mystic._scipyoptimize import fmin draw_contour() solution = main() print "solution: ", solution pylab.plot([solution[0]], [solution[1]], 'wo', markersize=10) print "Differential Evolution: Min: %s, sol = %s" % (fOsc3D(solution), solution) print "\nTrying scipy.optimize.fmin (Nelder-Mead Simplex)..." m = fmin(fOsc3D, [0.1, 0.1]) pylab.plot([m[0]], [m[1]], 'ro', markersize=5) print "solution w/ initial conditions (0.1,0.1): %s\n" % m m = fmin(fOsc3D, [1, 1]) pylab.plot([m[0]], [m[1]], 'ro', markersize=5) print "solution w/ initial conditions (1,1): %s\n" % m m = fmin(fOsc3D, [-1, 1]) print "solution w/ initial conditions (-1,1): %s\n" % m pylab.plot([m[0]], [m[1]], 'ro', markersize=5)