예제 #1
0
파일: lec02_svm.py 프로젝트: cocoaaa/ML120
def draw_svm_db(kernel="linear", gamma=1000, C=1.0):
    
    #Train
    X_train, X_test, y_train, y_test = mytools.make_fake_data()
    clf = SVC(kernel=kernel, gamma=gamma, C=C)
    start = time.time()
    clf.fit(X_train, y_train)
    train_time = time.time() - start
    
    #Predict
    start = time.time()
    preds = clf.predict(X_test)
    test_time = time.time() - start 
    
    #Score
    accuracy = accuracy_score(y_test, preds)
    
    print ""
    print "Kernel: ", kernel
    print "C: ", C, " , gamma: ", gamma
    print "Accuracy: ", accuracy
    print "Training time: ", round(train_time,3)
    print "Test time: ", round(test_time,3)
    
    #Visualization
    mytools.prettyPicture(clf, X_test, y_test)
    plt.show()
예제 #2
0
plt.show()


##Initialize GaussianNB classifier
clf = GaussianNB()
clf.fit(X_train, y_train)

##Test and calculate %accuracy
#preds = clf.predict(X_test)
#n_test = len(X_test)
#accs = [preds[i] == y_test[i] for i in range(0,n_test)]
#print sum(accs) / float(len(accs))
#
##Alternatively, use built-in function
#print clf.score(X_test, y_test)

#Plot predictions: black if correctly labeled, red otherwise
#plt.figure(0)
#plt.xlabel("grade"); plt.ylabel("bumpiness")
#for i, point in enumerate(X_test):
#    color = "black"
#    if not accs[i]: #wrong classification
#        color = "red"
#    plt.scatter(point[0], point[1], marker = u'x', c=color)
#plt.show()

#viz


mytools.prettyPicture(clf, X_test, y_test)
예제 #3
0
### labels_train and labels_test are the corresponding item labels
features_train, features_test, labels_train, labels_test = preprocess()
kernel = "linear"
clf = SVC(kernel=kernel)
start = time()
clf.fit(features_train, features_test)
train_time = time() - start

start = time()
preds = clf.predict(features_test)
test_time = time() - start

acc = accuracy_score(labels_test, preds)

print "train time: ", train_time
print "test time: ", test_time
print "accuracy: ", acc

mytools.prettyPicture(clf, features_test, labels_test)





#########################################################
### your code goes here ###

#########################################################