예제 #1
0
def train(model, train_sampler, train_data_loader, val_data_loader, device, distributed, config, args, ckpt_file_path):
    train_config = config['train']
    optim_config = train_config['optimizer']
    optimizer = func_util.get_optimizer(model, optim_config['type'], optim_config['params'])
    scheduler_config = train_config['scheduler']
    lr_scheduler = func_util.get_scheduler(optimizer, scheduler_config['type'], scheduler_config['params'])
    best_val_map = 0.0
    if file_util.check_if_exists(ckpt_file_path):
        best_val_map, _, _ = load_ckpt(ckpt_file_path, optimizer=optimizer, lr_scheduler=lr_scheduler)

    num_epochs = train_config['num_epochs']
    log_freq = train_config['log_freq']
    start_time = time.time()
    for epoch in range(num_epochs):
        if distributed:
            train_sampler.set_epoch(epoch)

        train_model(model, optimizer, train_data_loader, device, epoch, log_freq)
        lr_scheduler.step()

        # evaluate after every epoch
        coco_evaluator = main_util.evaluate(model, val_data_loader, device=device)
        # Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ]
        val_map = coco_evaluator.coco_eval['bbox'].stats[0]
        if val_map > best_val_map:
            print('Updating ckpt (Best BBox mAP: {:.4f} -> {:.4f})'.format(best_val_map, val_map))
            best_val_map = val_map
            save_ckpt(model, optimizer, lr_scheduler, best_val_map, config, args, ckpt_file_path)
        lr_scheduler.step()

    dist.barrier()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
예제 #2
0
def train(train_loader, valid_loader, input_shape, config, device, distributed,
          device_ids):
    ae_without_ddp, ae_type = ae_util.get_autoencoder(config, device)
    head_model = ae_util.get_head_model(config, input_shape, device)
    module_util.freeze_module_params(head_model)
    ckpt_file_path = config['autoencoder']['ckpt']
    start_epoch, best_valid_acc = resume_from_ckpt(ckpt_file_path,
                                                   ae_without_ddp)
    if best_valid_acc is None:
        best_valid_acc = 0.0

    train_config = config['train']
    criterion_config = train_config['criterion']
    criterion = func_util.get_loss(criterion_config['type'],
                                   criterion_config['params'])
    optim_config = train_config['optimizer']
    optimizer = func_util.get_optimizer(ae_without_ddp, optim_config['type'],
                                        optim_config['params'])
    scheduler_config = train_config['scheduler']
    scheduler = func_util.get_scheduler(optimizer, scheduler_config['type'],
                                        scheduler_config['params'])
    interval = train_config['interval']
    if interval <= 0:
        num_batches = len(train_loader)
        interval = num_batches // 20 if num_batches >= 20 else 1

    autoencoder = ae_without_ddp
    if distributed:
        autoencoder = DistributedDataParallel(ae_without_ddp,
                                              device_ids=device_ids)
        head_model = DataParallel(head_model, device_ids=device_ids)
    elif device.type == 'cuda':
        autoencoder = DataParallel(ae_without_ddp)
        head_model = DataParallel(head_model)

    end_epoch = start_epoch + train_config['epoch']
    start_time = time.time()
    for epoch in range(start_epoch, end_epoch):
        if distributed:
            train_loader.sampler.set_epoch(epoch)

        train_epoch(autoencoder, head_model, train_loader, optimizer,
                    criterion, epoch, device, interval)
        valid_acc = validate(ae_without_ddp, valid_loader, config, device,
                             distributed, device_ids)
        if valid_acc > best_valid_acc and main_util.is_main_process():
            print(
                'Updating ckpt (Best top1 accuracy: {:.4f} -> {:.4f})'.format(
                    best_valid_acc, valid_acc))
            best_valid_acc = valid_acc
            save_ckpt(ae_without_ddp, epoch, best_valid_acc, ckpt_file_path,
                      ae_type)
        scheduler.step()

    dist.barrier()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
    del head_model
예제 #3
0
def distill(teacher_model, student_model, train_sampler, train_data_loader,
            val_data_loader, device, distributed, distill_backbone_only,
            config, args):
    train_config = config['train']
    distillation_box = DistillationBox(teacher_model, student_model,
                                       train_config['criterion'])
    ckpt_file_path = config['student_model']['ckpt']
    optim_config = train_config['optimizer']
    optimizer = func_util.get_optimizer(student_model, optim_config['type'],
                                        optim_config['params'])
    scheduler_config = train_config['scheduler']
    lr_scheduler = func_util.get_scheduler(optimizer, scheduler_config['type'],
                                           scheduler_config['params'])
    use_bottleneck_transformer = args.transform_bottleneck
    best_val_map = 0.0
    if file_util.check_if_exists(ckpt_file_path):
        best_val_map, _, _ = load_ckpt(ckpt_file_path,
                                       optimizer=optimizer,
                                       lr_scheduler=lr_scheduler)

    num_epochs = train_config['num_epochs']
    log_freq = train_config['log_freq']
    teacher_model_without_dp = teacher_model.module if isinstance(
        teacher_model, DataParallel) else teacher_model
    student_model_without_ddp =\
        student_model.module if isinstance(student_model, DistributedDataParallel) else student_model
    start_time = time.time()
    for epoch in range(num_epochs):
        if distributed:
            train_sampler.set_epoch(epoch)

        teacher_model.eval()
        student_model.train()
        teacher_model_without_dp.distill_backbone_only = distill_backbone_only
        student_model_without_ddp.distill_backbone_only = distill_backbone_only
        student_model_without_ddp.backbone.body.layer1.use_bottleneck_transformer = False
        distill_model(distillation_box, train_data_loader, optimizer, log_freq,
                      device, epoch)
        student_model_without_ddp.distill_backbone_only = False
        student_model_without_ddp.backbone.body.layer1.use_bottleneck_transformer = use_bottleneck_transformer
        coco_evaluator = main_util.evaluate(student_model,
                                            val_data_loader,
                                            device=device)
        # Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ]
        val_map = coco_evaluator.coco_eval['bbox'].stats[0]
        if val_map > best_val_map and misc_util.is_main_process():
            print('Updating ckpt (Best BBox mAP: {:.4f} -> {:.4f})'.format(
                best_val_map, val_map))
            best_val_map = val_map
            save_ckpt(student_model_without_ddp, optimizer, lr_scheduler,
                      best_val_map, config, args, ckpt_file_path)
        lr_scheduler.step()

    dist.barrier()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
예제 #4
0
def distill(teacher_model, student_model, train_data_loader, val_data_loader,
            device, distributed, start_epoch, config, args):
    print('Start knowledge distillation')
    train_config = config['train']
    distillation_box = DistillationBox(teacher_model, student_model,
                                       train_config['criterion'])
    ckpt_file_path = config['mimic_model']['ckpt']
    optim_config = train_config['optimizer']
    optimizer = func_util.get_optimizer(student_model, optim_config['type'],
                                        optim_config['params'])
    scheduler_config = train_config['scheduler']
    lr_scheduler = func_util.get_scheduler(optimizer, scheduler_config['type'],
                                           scheduler_config['params'])
    best_val_top1_accuracy = 0.0
    if file_util.check_if_exists(ckpt_file_path):
        best_val_map, _, _ = load_ckpt(ckpt_file_path,
                                       optimizer=optimizer,
                                       lr_scheduler=lr_scheduler)

    interval = train_config['interval']
    if interval <= 0:
        num_batches = len(train_data_loader)
        interval = num_batches // 20 if num_batches >= 20 else 1

    student_model_without_ddp = \
        student_model.module if isinstance(student_model, DistributedDataParallel) else student_model
    start_time = time.time()
    for epoch in range(start_epoch, train_config['epoch']):
        if distributed:
            train_data_loader.sampler.set_epoch(epoch)

        teacher_model.eval()
        student_model.train()
        distill_one_epoch(distillation_box, train_data_loader, optimizer,
                          device, epoch, interval, args.apex)
        val_top1_accuracy =\
            evaluate(student_model, val_data_loader, device=device, interval=interval, split_name='Validation')
        if val_top1_accuracy > best_val_top1_accuracy and main_util.is_main_process(
        ):
            print(
                'Updating ckpt (Best top1 accuracy: {:.4f} -> {:.4f})'.format(
                    best_val_top1_accuracy, val_top1_accuracy))
            best_val_top1_accuracy = val_top1_accuracy
            save_ckpt(student_model_without_ddp, optimizer, lr_scheduler,
                      best_val_top1_accuracy, config, args, ckpt_file_path)
        lr_scheduler.step()

    dist.barrier()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
예제 #5
0
def distill(teacher_model, student_model, train_sampler, train_data_loader, val_data_loader,
            device, distributed, distill_backbone_only, config, args):
    train_config = config['train']
    student_config = config['student_model']
    distillation_box = DistillationBox(teacher_model, student_model,
                                       train_config['criterion'], student_config)
    ckpt_file_path = config['student_model']['ckpt']
    optim_config = train_config['optimizer']
    optimizer = func_util.get_optimizer(student_model, optim_config['type'], optim_config['params'])
    scheduler_config = train_config['scheduler']
    lr_scheduler = func_util.get_scheduler(optimizer, scheduler_config['type'], scheduler_config['params'])
    if file_util.check_if_exists(ckpt_file_path):
        best_val_map, _, _ = load_ckpt(ckpt_file_path, optimizer=optimizer, lr_scheduler=lr_scheduler)
        save_ckpt(student_model, optimizer, lr_scheduler, best_val_map, config, args, ckpt_file_path)
예제 #6
0
def train(model, train_loader, valid_loader, best_valid_acc, criterion, device,
          distributed, device_ids, train_config, num_epochs, start_epoch,
          init_lr, ckpt_file_path, model_type):
    model_without_ddp = model
    if distributed:
        model = DistributedDataParallel(model_without_ddp,
                                        device_ids=device_ids)
    elif device.type == 'cuda':
        model = DataParallel(model_without_ddp)

    optim_config = train_config['optimizer']
    if init_lr is not None:
        optim_config['params']['lr'] = init_lr

    optimizer = func_util.get_optimizer(model, optim_config['type'],
                                        optim_config['params'])
    scheduler_config = train_config['scheduler']
    scheduler = func_util.get_scheduler(optimizer, scheduler_config['type'],
                                        scheduler_config['params'])
    interval = train_config['interval']
    if interval <= 0:
        num_batches = len(train_loader)
        interval = num_batches // 20 if num_batches >= 20 else 1

    end_epoch = start_epoch + train_config[
        'epoch'] if num_epochs is None else start_epoch + num_epochs
    start_time = time.time()
    for epoch in range(start_epoch, end_epoch):
        if distributed:
            train_loader.sampler.set_epoch(epoch)

        train_epoch(model, train_loader, optimizer, criterion, epoch, device,
                    interval)
        valid_acc = validate(model, valid_loader, device)
        if valid_acc > best_valid_acc and main_util.is_main_process():
            print(
                'Updating ckpt (Best top1 accuracy: {:.4f} -> {:.4f})'.format(
                    best_valid_acc, valid_acc))
            best_valid_acc = valid_acc
            save_ckpt(model_without_ddp, best_valid_acc, epoch, ckpt_file_path,
                      model_type)
        scheduler.step()

    dist.barrier()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
예제 #7
0
def train(model, ext_classifier, train_sampler, train_data_loader,
          val_data_loader, device, distributed, config, args, ckpt_file_path):
    train_config = config['train']
    optim_config = train_config['optimizer']
    optimizer = func_util.get_optimizer(ext_classifier, optim_config['type'],
                                        optim_config['params'])
    scheduler_config = train_config['scheduler']
    lr_scheduler = func_util.get_scheduler(optimizer, scheduler_config['type'],
                                           scheduler_config['params'])
    best_val_roc_auc = 0.0
    if file_util.check_if_exists(ckpt_file_path):
        best_val_roc_auc, _, _ =\
            load_ckpt(ckpt_file_path, model=ext_classifier, optimizer=optimizer, lr_scheduler=lr_scheduler)

    num_epochs = train_config['num_epochs']
    log_freq = train_config['log_freq']
    start_time = time.time()
    for epoch in range(num_epochs):
        if distributed:
            train_sampler.set_epoch(epoch)

        train_model(model, optimizer, train_data_loader, device, epoch,
                    log_freq)
        lr_scheduler.step()

        # evaluate after every epoch
        val_roc_auc = evaluate(model,
                               val_data_loader,
                               device,
                               min_recall=args.min_recall,
                               split_name='Validation')
        if val_roc_auc > best_val_roc_auc:
            print('Updating ckpt (Best ROC-AUC: {:.4f} -> {:.4f})'.format(
                best_val_roc_auc, val_roc_auc))
            best_val_roc_auc = val_roc_auc
            save_ckpt(ext_classifier, optimizer, lr_scheduler,
                      best_val_roc_auc, config, args, ckpt_file_path)

    dist.barrier()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
예제 #8
0
def main(args):
    config = yaml_util.load_yaml_file(args.config)
    if args.json is not None:
        main_util.overwrite_config(config, args.json)

    distributed, device_ids = main_util.init_distributed_mode(args.world_size, args.dist_url)
    device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
    teacher_model = get_model(config['teacher_model'], device)
    module_util.freeze_module_params(teacher_model)
    student_model_config = config['student_model']
    student_model = get_model(student_model_config, device)
    freeze_modules(student_model, student_model_config)
    ckpt_file_path = config['student_model']['ckpt']
    train_config = config['train']
    optim_config = train_config['optimizer']
    optimizer = func_util.get_optimizer(student_model, optim_config['type'], optim_config['params'])
    scheduler_config = train_config['scheduler']
    lr_scheduler = func_util.get_scheduler(optimizer, scheduler_config['type'], scheduler_config['params'])
    if file_util.check_if_exists(ckpt_file_path):
        best_val_map, _, _ = load_ckpt(ckpt_file_path, optimizer=optimizer, lr_scheduler=lr_scheduler)
        save_ckpt(student_model, optimizer, lr_scheduler, best_val_map, config, args, ckpt_file_path)
예제 #9
0
def distill(train_loader, valid_loader, input_shape, aux_weight, config,
            device, distributed, device_ids):
    teacher_model_config = config['teacher_model']
    teacher_model, teacher_model_type = mimic_util.get_teacher_model(
        teacher_model_config, input_shape, device)
    module_util.freeze_module_params(teacher_model)
    student_model_config = config['student_model']
    student_model = mimic_util.get_student_model(teacher_model_type,
                                                 student_model_config,
                                                 config['dataset']['name'])
    student_model = student_model.to(device)
    start_epoch, best_valid_acc = mimic_util.resume_from_ckpt(
        student_model_config['ckpt'], student_model, is_student=True)
    if best_valid_acc is None:
        best_valid_acc = 0.0

    train_config = config['train']
    criterion_config = train_config['criterion']
    criterion = func_util.get_loss(criterion_config['type'],
                                   criterion_config['params'])
    optim_config = train_config['optimizer']
    optimizer = func_util.get_optimizer(student_model, optim_config['type'],
                                        optim_config['params'])
    scheduler_config = train_config['scheduler']
    scheduler = func_util.get_scheduler(optimizer, scheduler_config['type'],
                                        scheduler_config['params'])
    interval = train_config['interval']
    if interval <= 0:
        num_batches = len(train_loader)
        interval = num_batches // 20 if num_batches >= 20 else 1

    student_model_without_ddp = student_model
    if distributed:
        teacher_model = DataParallel(teacher_model, device_ids=device_ids)
        student_model = DistributedDataParallel(student_model,
                                                device_ids=device_ids)
        student_model_without_ddp = student_model.module

    ckpt_file_path = student_model_config['ckpt']
    end_epoch = start_epoch + train_config['epoch']
    start_time = time.time()
    for epoch in range(start_epoch, end_epoch):
        if distributed:
            train_loader.sampler.set_epoch(epoch)

        distill_one_epoch(student_model, teacher_model, train_loader,
                          optimizer, criterion, epoch, device, interval,
                          aux_weight)
        valid_acc = validate(student_model, valid_loader, config, device,
                             distributed, device_ids)
        if valid_acc > best_valid_acc and main_util.is_main_process():
            print(
                'Updating ckpt (Best top1 accuracy: {:.4f} -> {:.4f})'.format(
                    best_valid_acc, valid_acc))
            best_valid_acc = valid_acc
            save_ckpt(student_model_without_ddp, epoch, best_valid_acc,
                      ckpt_file_path, teacher_model_type)
        scheduler.step()

    dist.barrier()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
    del teacher_model
    del student_model
예제 #10
0
def distill(teacher_model, student_model, train_sampler, train_data_loader,
            val_data_loader, device, distributed, distill_backbone_only,
            config, args):
    train_config = config['train']
    student_config = config['student_model']
    distillation_box = DistillationBox(teacher_model, student_model,
                                       train_config['criterion'],
                                       student_config)
    ckpt_file_path = config['student_model']['ckpt']
    optim_config = train_config['optimizer']
    optimizer = func_util.get_optimizer(student_model, optim_config['type'],
                                        optim_config['params'])
    scheduler_config = train_config['scheduler']
    lr_scheduler = func_util.get_scheduler(optimizer, scheduler_config['type'],
                                           scheduler_config['params'])
    use_bottleneck_transformer = args.transform_bottleneck
    best_val_map = 0.0
    if file_util.check_if_exists(ckpt_file_path):
        if args.ignore_optimizer:
            best_val_map, _, _ = load_ckpt(ckpt_file_path,
                                           optimizer=None,
                                           lr_scheduler=None)
        else:
            best_val_map, _, _ = load_ckpt(ckpt_file_path,
                                           optimizer=optimizer,
                                           lr_scheduler=lr_scheduler)

    num_epochs = train_config['num_epochs']
    log_freq = train_config['log_freq']
    teacher_model_without_dp = teacher_model.module if isinstance(
        teacher_model, DataParallel) else teacher_model
    student_model_without_ddp = \
        student_model.module if isinstance(student_model, DistributedDataParallel) else student_model
    start_time = time.time()

    post_bn = False
    if 'post_batch_norm' in config['train']:
        post_bn = config['train']['post_batch_norm']

    for epoch in range(lr_scheduler.last_epoch, num_epochs):
        if distributed:
            train_sampler.set_epoch(epoch)

        teacher_model.eval()
        student_model.train()
        teacher_model_without_dp.distill_backbone_only = distill_backbone_only
        student_model_without_ddp.distill_backbone_only = distill_backbone_only
        set_bottleneck_transformer(student_model_without_ddp, False)

        distill_model(distillation_box, train_data_loader, optimizer, log_freq,
                      device, epoch)
        student_model_without_ddp.distill_backbone_only = False
        set_bottleneck_transformer(student_model_without_ddp,
                                   use_bottleneck_transformer)

        val_map = 0
        width_list = [1.0]
        if 'slimmable' in student_config['backbone']['params']:
            width_list = [0.25, 0.5, 0.75, 1.0]
            width_list = [
                w for w in width_list
                if w in student_config['backbone']['params']['width_mult_list']
            ]

        for width in width_list:
            set_width(student_model, width)
            if post_bn:
                ComputeBN(student_model, train_data_loader)
            print('\n[Student model@width={}]'.format(width))
            coco_evaluator = main_util.evaluate(student_model,
                                                val_data_loader,
                                                device=device)
            val_map += coco_evaluator.coco_eval['bbox'].stats[0]
        val_map = val_map / len(width_list)

        print('BBox mAP: {:.4f})'.format(val_map))
        if val_map > best_val_map and misc_util.is_main_process():
            print('Updating ckpt (Best BBox mAP: {:.4f} -> {:.4f})'.format(
                best_val_map, val_map))
            best_val_map = val_map
            save_ckpt(student_model_without_ddp, optimizer, lr_scheduler,
                      best_val_map, config, args, ckpt_file_path)

        lr_scheduler.step()

    if distributed:
        dist.barrier()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
예제 #11
0
def main(args):
    if args.apex:
        if sys.version_info < (3, 0):
            raise RuntimeError(
                'Apex currently only supports Python 3. Aborting.')
        if amp is None:
            raise RuntimeError(
                'Failed to import apex. Please install apex from https://www.github.com/nvidia/apex '
                'to enable mixed-precision training.')

    distributed, device_ids = main_util.init_distributed_mode(
        args.world_size, args.dist_url)
    print(args)
    if torch.cuda.is_available():
        torch.backends.cudnn.benchmark = True

    config = yaml_util.load_yaml_file(args.config)
    device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
    dataset_config = config['dataset']
    input_shape = config['input_shape']
    train_config = config['train']
    test_config = config['test']
    train_data_loader, val_data_loader, test_data_loader =\
        dataset_util.get_data_loaders(dataset_config, batch_size=train_config['batch_size'],
                                      rough_size=train_config['rough_size'], reshape_size=input_shape[1:3],
                                      jpeg_quality=-1, test_batch_size=test_config['batch_size'],
                                      distributed=distributed)

    teacher_model_config = config['teacher_model']
    teacher_model, teacher_model_type = mimic_util.get_org_model(
        teacher_model_config, device)
    module_util.freeze_module_params(teacher_model)

    student_model = mimic_util.get_mimic_model_easily(config, device)
    student_model_config = config['mimic_model']

    optim_config = train_config['optimizer']
    optimizer = func_util.get_optimizer(student_model, optim_config['type'],
                                        optim_config['params'])
    use_apex = args.apex
    if use_apex:
        student_model, optimizer = amp.initialize(
            student_model, optimizer, opt_level=args.apex_opt_level)

    if distributed:
        teacher_model = DataParallel(teacher_model, device_ids=device_ids)
        student_model = DistributedDataParallel(student_model,
                                                device_ids=device_ids)

    start_epoch = args.start_epoch
    if not args.test_only:
        distill(teacher_model, student_model, train_data_loader,
                val_data_loader, device, distributed, start_epoch, config,
                args)
        student_model_without_ddp =\
            student_model.module if isinstance(student_model, DistributedDataParallel) else student_model
        load_ckpt(student_model_config['ckpt'],
                  model=student_model_without_ddp,
                  strict=True)

    if not args.student_only:
        evaluate(teacher_model,
                 test_data_loader,
                 device,
                 title='[Teacher: {}]'.format(teacher_model_type))
    evaluate(student_model,
             test_data_loader,
             device,
             title='[Student: {}]'.format(student_model_config['type']))