예제 #1
0
def iv_net(x, training=True):
    with tf.variable_scope('iv_net', reuse=tf.AUTO_REUSE):
        x = ms.fc(x, units=40 * 40 * 32)
        x = ms.bn(x, training=training)
        x = tf.reshape(x, [-1, 40, 40, 32])
        x = fn.id_blk(x, 32, [3, 3])
        x = fn.id_blk(x, 32, [3, 3])
        x = ms.max_pool(x, [2, 2], 2)

        x = ms.conv(x, 64, [3, 3])
        x = ms.bn(x, training=training)
        x = ms.activation(x, relu=True)
        x = fn.id_blk(x, 64, [3, 3])
        x = fn.id_blk(x, 64, [3, 3])
        x = ms.max_pool(x, [2, 2], 2)

        x = ms.conv(x, 128, [3, 3])
        x = ms.bn(x, training=training)
        x = ms.activation(x, relu=True)
        x = fn.id_blk(x, 128, [3, 3])
        x = fn.id_blk(x, 128, [3, 3])
        x = ms.max_pool(x, [2, 2], 2)

        x = ms.conv(x, 256, [3, 3])
        x = ms.bn(x, training=training)
        x = ms.activation(x, relu=True)
        x = fn.id_blk(x, 256, [3, 3])
        x = fn.id_blk(x, 256, [3, 3])

        x = tf.reshape(x, [-1, 5 * 5 * 256])
        x = ms.fc(x, units=5)
        x = ms.activation(x, relu=False)

    return x
예제 #2
0
    x = sess.graph.get_tensor_by_name(x_tensor_name)
    # y = sess.graph.get_tensor_by_name(y_tensor_name)

    # connect = sess.graph.get_operation_by_name('fw_net/identical_conv3/relu_3').outputs[0]
    connect = sess.graph.get_operation_by_name(
        'fw_net/t_conv3/relu').outputs[0]
    with tf.name_scope('trans_part'):
        with tf.variable_scope('trans_part'):
            # with tf.variable_scope('t_conv3'):
            #     t = ms.t_conv2d(connect, 32, [2, 2], 2)
            #     # x = ms.bn(x)
            #     t = ms.activation(t, relu=True)

            with tf.variable_scope('identical_conv4'):
                t = ms.conv(connect, 32, [3, 3])
                # x = ms.bn(x, training=training)
                t = ms.activation(t, relu=True)

                t = ms.conv(t, 32, [3, 3])
                # x = ms.bn(x, training=training)
                t = ms.activation(t, relu=True)

                t = ms.conv(t, 32, [3, 3])
                # x = ms.bn(x, training=training)
                t = ms.activation(t, relu=True)

                t = ms.conv(t, 32, [3, 3])
                # x = ms.bn(x, training=training)
                t = ms.activation(t, relu=True)
예제 #3
0
def fw_net(x, training=True):
    with tf.name_scope('fw_net'):
        with tf.variable_scope('fw_net'):

            with tf.name_scope('fc1'):
                with tf.variable_scope('fc1'):
                    x = ms.fc(x, 5 * 5 * 256)
                    # x = ms.bn(x)
                    x = ms.activation(x, relu=True)
                x = tf.reshape(x, [-1, 5, 5, 256])

            with tf.name_scope('identical_conv1'):
                with tf.variable_scope('identical_conv1'):
                    x = ms.conv(x, 256, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 256, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 256, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 256, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 256, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

            with tf.name_scope('t_conv1'):
                with tf.variable_scope('t_conv1'):
                    x = ms.t_conv2d(x, 128, [2, 2], 2)
                    # x = ms.bn(x)
                    x = ms.activation(x, relu=True)

            with tf.name_scope('identical_conv2'):
                with tf.variable_scope('identical_conv2'):
                    x = ms.conv(x, 128, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 128, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 128, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 128, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 128, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

            with tf.name_scope('t_conv2'):
                with tf.variable_scope('t_conv2'):
                    x = ms.t_conv2d(x, 64, [2, 2], 2)
                    # x = ms.bn(x)
                    x = ms.activation(x, relu=True)

            with tf.name_scope('identical_conv3'):
                with tf.variable_scope('identical_conv3'):
                    x = ms.conv(x, 64, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 64, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 64, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 64, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 64, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

            with tf.name_scope('t_conv3'):
                with tf.variable_scope('t_conv3'):
                    x = ms.t_conv2d(x, 32, [2, 2], 2)
                    # x = ms.bn(x)
                    x = ms.activation(x, relu=True)

            with tf.name_scope('identical_conv4'):
                with tf.variable_scope('identical_conv4'):
                    x = ms.conv(x, 32, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 32, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 32, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 32, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                    x = ms.conv(x, 32, [3, 3])
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=True)

                x = tf.reshape(x, [-1, 40 * 40 * 32])

            with tf.name_scope('fc2'):
                with tf.variable_scope('fc2'):
                    x = ms.fc(x, units=603)
                    # x = ms.bn(x, training=training)
                    x = ms.activation(x, relu=False)

    return x
예제 #4
0
    x = sess.graph.get_tensor_by_name(x_tensor_name)
    # y = sess.graph.get_tensor_by_name(y_tensor_name)

    connect = sess.graph.get_operation_by_name('fw_net/fw_net/identical_conv3/identical_conv3/relu_4').outputs[0]

    with tf.name_scope('trans_part'):
        with tf.variable_scope('trans_part'):
            with tf.name_scope('t_conv3'):
                with tf.variable_scope('t_conv3'):
                    t = ms.t_conv2d(connect, 32, [2, 2], 2)
                    # x = ms.bn(x)
                    t = ms.activation(t, relu=True)

            with tf.name_scope('identical_conv4'):
                with tf.variable_scope('identical_conv4'):
                    t = ms.conv(t, 32, [3, 3])
                    # x = ms.bn(x, training=training)
                    t = ms.activation(t, relu=True)

                    t = ms.conv(t, 32, [3, 3])
                    # x = ms.bn(x, training=training)
                    t = ms.activation(t, relu=True)

                    t = ms.conv(t, 32, [3, 3])
                    # x = ms.bn(x, training=training)
                    t = ms.activation(t, relu=True)

                    t = ms.conv(t, 32, [3, 3])
                    # x = ms.bn(x, training=training)
                    t = ms.activation(t, relu=True)