예제 #1
0
    def latihh10(self):
        self.train10 = pd.DataFrame()
        eeays = []
        #print('att',self.__atribut_terpilih)

        for i in self.__atribut_terpilih:
            #print('i',i)
            for j in self.latih10:
                #print('y',j)
                eeays.append(self.__dataset.iloc[j, i])
                #        dcc.at[i, dc.columns[i]] = 1

            self.train10[self.__dataset.columns[i]] = eeays
            #print('ini', eeays)
            eeays = []
        label = []
        i = 0
        while i < len(self.latih10):
            label.append(self.__dataset.loc[i, 'Classification'])
            i += 1

        self.train10['Classification'] = label

        nb = nbb.Naivebayes(self.train10)
        dl = nb.latih()
        self.kfold10()
        du = nb.uji(self.fold10)

        return self.train10
예제 #2
0
    def latihh1(self):
        self.train1 = pd.DataFrame()
        eeays = []
        #print('att',self.__atribut_terpilih)

        for i in self.__atribut_terpilih:
            #print('i',i)
            for j in self.latih1:
                #print('y',j)
                eeays.append(self.__dataset.iloc[j, i])
                #        dcc.at[i, dc.columns[i]] = 1

            self.train1[self.__dataset.columns[i]] = eeays
            #print('ini', eeays)
            eeays = []

        label = []
        i = 0
        while i < len(self.latih1):
            label.append(self.__dataset.loc[i, 'Classification'])
            i += 1

        self.train1['Classification'] = label
        #print('latih 1', self.train1)

        nb = nbb.Naivebayes(self.train1)
        dl = nb.latih()
        self.kfold()
        du = nb.uji(self.fold1)
        print('IA',du)
        #UI = ab.New_Toplevel()
        #UII = UI.config(1)
        #self.train1.to_excel(r'train11.xlsx', sheet_name='train 1')
        return self.train1