def _image_to_head(self, is_training, reuse=None): with slim.arg_scope(nasnet_large_arg_scope()): pool, _ = build_nasnet_large(self._input, 0, is_training=is_training) return pool
def testBuildPreLogitsLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = None inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_large_arg_scope()): net, end_points = nasnet.build_nasnet_large(inputs, num_classes) self.assertFalse('AuxLogits' in end_points) self.assertFalse('Predictions' in end_points) self.assertTrue(net.op.name.startswith('final_layer/Mean')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 4032])
def infer(self, inputs): images = inputs['images'] with tf.variable_scope(tf.get_variable_scope()): with slim.arg_scope(nasnet.nasnet_large_arg_scope()): _, _, nas_dict = build_nasnet_large( images, is_training=self.is_training) with tf.variable_scope('refinenet'): pred, _ = build_refine_net(nas_dict, num_classes=self.num_cls, keep_prob=self.keep_prob) return {'logits': pred}
def __call__(self, x_input, batch_size=None, is_training=False): """ Construct the model and return probablities for given input .""" if self.built: return self.logits with slim.arg_scope(nasnet.nasnet_large_arg_scope()): with tf.variable_scope(self.ckpt): logits, end_points = nasnet.build_nasnet_large( x_input, self.num_classes, is_training=False) self.built = True self.scores = end_points['Predictions'] self.logits = logits self.preds = tf.argmax(logits, axis=1) return self.logits
def testOverrideHParamsLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() config = nasnet.large_imagenet_config() config.set_hparam('data_format', 'NCHW') with slim.arg_scope(nasnet.nasnet_large_arg_scope()): _, end_points = nasnet.build_nasnet_large(inputs, num_classes, config=config) self.assertListEqual(end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])
def testNoAuxHeadLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = 1000 for use_aux_head in (True, False): tf.reset_default_graph() inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() config = nasnet.large_imagenet_config() config.set_hparam('use_aux_head', int(use_aux_head)) with slim.arg_scope(nasnet.nasnet_large_arg_scope()): _, end_points = nasnet.build_nasnet_large(inputs, num_classes, config=config) self.assertEqual('AuxLogits' in end_points, use_aux_head)
def testBuildLogitsLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_large_arg_scope()): logits, end_points = nasnet.build_nasnet_large(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
def testAllEndPointsShapesLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_large_arg_scope()): _, end_points = nasnet.build_nasnet_large(inputs, num_classes) endpoints_shapes = { 'Stem': [batch_size, 42, 42, 336], 'Cell_0': [batch_size, 42, 42, 1008], 'Cell_1': [batch_size, 42, 42, 1008], 'Cell_2': [batch_size, 42, 42, 1008], 'Cell_3': [batch_size, 42, 42, 1008], 'Cell_4': [batch_size, 42, 42, 1008], 'Cell_5': [batch_size, 42, 42, 1008], 'Cell_6': [batch_size, 21, 21, 2016], 'Cell_7': [batch_size, 21, 21, 2016], 'Cell_8': [batch_size, 21, 21, 2016], 'Cell_9': [batch_size, 21, 21, 2016], 'Cell_10': [batch_size, 21, 21, 2016], 'Cell_11': [batch_size, 21, 21, 2016], 'Cell_12': [batch_size, 11, 11, 4032], 'Cell_13': [batch_size, 11, 11, 4032], 'Cell_14': [batch_size, 11, 11, 4032], 'Cell_15': [batch_size, 11, 11, 4032], 'Cell_16': [batch_size, 11, 11, 4032], 'Cell_17': [batch_size, 11, 11, 4032], 'Reduction_Cell_0': [batch_size, 21, 21, 1344], 'Reduction_Cell_1': [batch_size, 11, 11, 2688], 'global_pool': [batch_size, 4032], # Logits and predictions 'AuxLogits': [batch_size, num_classes], 'Logits': [batch_size, num_classes], 'Predictions': [batch_size, num_classes] } self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: tf.logging.info('Endpoint name: {}'.format(endpoint_name)) expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual( end_points[endpoint_name].get_shape().as_list(), expected_shape)
def pnasnet_large_arg_scope(weight_decay=4e-5, batch_norm_decay=0.9997, batch_norm_epsilon=0.001): """Default arg scope for the PNASNet Large ImageNet model.""" return nasnet.nasnet_large_arg_scope(weight_decay, batch_norm_decay, batch_norm_epsilon)