def test_fast_mean_iterated_with_values(self): # Arrange values1 = np.asarray([0.0, 1.1, 2.2], dtype=np.float64) values2 = np.asarray([0.0, 1.1, 2.2, 3.3, 4.4], dtype=np.float64) # Act result1 = fast_mean_iterated(values1, 0.0, fast_mean(values1), 5) result2 = fast_mean_iterated(values2, 5.5, np.mean(values2), 5) # Assert assert result1 == np.mean([0.0, 1.1, 2.2]) assert result2 == 3.3000000000000003
def test_fast_mean_iterated_with_values(self): # Arrange values1 = [0.0, 1.1, 2.2] values2 = [0.0, 1.1, 2.2, 3.3, 4.4] # Act result1 = fast_mean_iterated(values1, 0.0, fast_mean(values1), 5) result2 = fast_mean_iterated(values2, 5.5, np.mean(values2), 5) # Assert self.assertEqual(np.mean([0.0, 1.1, 2.2]), result1) self.assertAlmostEqual(3.3, result2)
def test_fast_mean_iterated_with_values(self): # Arrange values1 = [0.0, 1.1, 2.2] values2 = [0.0, 1.1, 2.2, 3.3, 4.4] # Act result1 = fast_mean_iterated(values1, 0.0, fast_mean(values1), 5) result2 = fast_mean_iterated(values2, 5.5, np.mean(values2), 5) # Assert assert np.mean([0.0, 1.1, 2.2]) == result1 assert 3.3000000000000003 == result2
def test_fast_mean_iterated_with_empty_list_returns_zero(self): # Arrange values = np.asarray([], dtype=np.float64) # Act result = fast_mean_iterated(values, 0.0, 0.0, 6) # Assert assert result == 0
def test_fast_mean_iterated_with_empty_list_returns_zero(self): # Arrange values = [] # Act result = fast_mean_iterated(values, 0.0, 0.0, 6) # Assert self.assertEqual(0, result)