def load(csv_file): result = {} result['imu'] = [] result['gps'] = [] result['air'] = [] result['filter'] = [] #result['pilot'] = [] result['act'] = [] result['ap'] = [] last_gps_time = -1.0 with open(csv_file, 'rb') as f: reader = csv.DictReader(f) for row in reader: if row['TIME_StartTime'] == '': # empty time continue imu = IMUdata() imu.time = float(row['TIME_StartTime']) / 1000000.0 imu.p = float(row['IMU_GyroX']) imu.q = float(row['IMU_GyroY']) imu.r = float(row['IMU_GyroZ']) imu.ax = float(row['IMU_AccX']) imu.ay = float(row['IMU_AccY']) imu.az = float(row['IMU_AccZ']) hx = float(row['IMU_MagX']) hy = float(row['IMU_MagY']) hz = float(row['IMU_MagZ']) hf = np.array([hx, hy, hz]) norm = np.linalg.norm(hf) hf /= norm imu.hx = hf[0] imu.hy = hf[1] imu.hz = hf[2] #print imu.hx, imu.hy, imu.hz imu.temp = 15.0 result['imu'].append(imu) if row['GPS_GPSTime'] != '': gps = GPSdata() gps.time = imu.time gps.unix_sec = float(row['GPS_GPSTime']) / 1000000.0 gps.lat = float(row['GPS_Lat']) gps.lon = float(row['GPS_Lon']) gps.alt = float(row['GPS_Alt']) gps.vn = float(row['GPS_VelN']) gps.ve = float(row['GPS_VelE']) gps.vd = float(row['GPS_VelD']) gps.sats = int(row['GPS_nSat']) if gps.sats >= 5 and gps.unix_sec > last_gps_time: result['gps'].append(gps) last_gps_time = gps.unix_sec if row['SENS_BaroPres'] != '': air = Airdata() air.time = imu.time air.static_press = float(row['SENS_BaroPres']) if 'AIR1_DiffPres' in row and row['AIR1_DiffPres'] != '': air.diff_press = float(row['AIR1_DiffPres']) else: air.diff_press = 0.0 if 'AIRS_Temp' in row and row['AIRS_Temp'] != '': air.temp = float(row['AIRS_Temp']) else: air.temp = 0.0 if 'AIRS_IAS' in row and row['AIRS_IAS'] != '': air.airspeed = float(row['AIRS_IAS']) * mps2kt else: air.airspeed = 0.0 if 'AIR1_BaroAlt' in row and row['AIR1_BaroAlt'] != '': air.alt_press = float(row['AIR1_BaroAlt']) else: air.alt_press = 0.0 if 'GPS_Alt' in row and row['GPS_Alt'] != '': air.alt_true = float(row['GPS_Alt']) else: air.alt_true = 0.0 result['air'].append(air) if row['GPOS_Lat'] != '': nav = NAVdata() nav.time = imu.time nav.lat = float(row['GPOS_Lat']) * d2r nav.lon = float(row['GPOS_Lon']) * d2r nav.alt = float(row['GPOS_Alt']) nav.vn = float(row['GPOS_VelN']) nav.ve = float(row['GPOS_VelE']) nav.vd = float(row['GPOS_VelD']) nav.phi = float(row['ATT_Roll']) nav.the = float(row['ATT_Pitch']) psi = float(row['ATT_Yaw']) if psi > 180.0: psi = psi - 360.0 if psi < -180.0: psi = psi + 360.0 nav.psi = psi result['filter'].append(nav) if row['GPSP_Alt'] != '': ap = APdata() ap.time = imu.time ap.hdg = my_float(row['ATSP_YawSP']) * r2d ap.roll = my_float(row['ATSP_RollSP']) * r2d ap.alt = my_float(row['GPSP_Alt']) * m2ft ap.pitch = my_float(row['ATSP_PitchSP']) * r2d ap.speed = my_float(row['TECS_AsSP']) * mps2kt result['ap'].append(ap) if row['OUT0_Out0'] != '': act = Controldata() ch0 = (float(row['OUT0_Out0']) - 1500) / 500 ch1 = (float(row['OUT0_Out1']) - 1500) / 500 ch2 = (float(row['OUT0_Out2']) - 1000) / 1000 ch3 = (float(row['OUT0_Out3']) - 1500) / 500 #print ch0, ch1, ch2, ch3 act.time = imu.time act.aileron = (ch0 - ch1) act.elevator = -(ch0 + ch1) act.throttle = ch2 act.rudder = ch3 act.gear = 0.0 act.flaps = 0.0 act.aux1 = 0.0 act.auto_manual = 0.0 result['act'].append(act) return result
def load(mat_filename): # Name of .mat file that exists in the directory defined above and # has the flight_data and flight_info structures filepath = mat_filename # Load Flight Data: ## IMPORTANT to have the .mat file in the # flight_data and flight_info structures for this function ## data = sio.loadmat(filepath, struct_as_record=False, squeeze_me=True) print 'Loaded Data Summary' print '* File: %s' % filepath.split(os.path.sep)[-1] try: flight_data, flight_info = data['flight_data'], data['flight_info'] print('* Date: %s' % flight_info.date) print('* Aircraft: %s' % flight_info.aircraft) except KeyError: print 'KeyError' # Convert from Python dictionary to struct-like before flight_data = dict2struct() for k in data: exec("flight_data.%s = data['%s']" % (k, k)) del(data) # Add both names for pitch: the and theta try: flight_data.theta = flight_data.the except AttributeError: pass # Fill in time data t = flight_data.time print 't:', t # Magnetometer data - not used hence don't trust hm = np.vstack((flight_data.hx, -flight_data.hy, -flight_data.hz)).T # Geri mag calibration mag_affine = np.array( [[ 4.3374191736, 0.9527668819, 0.2106929615, 0.0649324241], [-3.7617930866, 6.2839014058, -3.5707398622, 2.1616165305], [-0.8688354599, 0.2205650877, 4.7466115481, -2.7041600008], [ 0. , 0. , 0. , 1. ]] ) # Populate IMU Data imu = np.vstack((t, flight_data.p, flight_data.q, flight_data.r, flight_data.ax, flight_data.ay, flight_data.az, hm[:,0], hm[:,1], hm[:,2])).T # Note that accelerometer and gyro measurements logged by UAV # after 11/17/2011 flight (seemingly, see # http://trac.umnaem.webfactional.com/wiki/FlightReports/2011_11_17) # have the nav-estimated bias removed before datalogging. So to work with raw # imu-data, we add back the on-board estimated biases. if not FLAG_UNBIASED_IMU: try: imu[:, 1:4] += np.vstack((flight_data.p_bias, flight_data.q_bias, flight_data.r_bias)).T imu[:, 4:7] += np.vstack((flight_data.ax_bias, flight_data.ay_bias, flight_data.az_bias)).T except AttributeError: print('Note: On board estimated bias not found.') # Air Data ias = flight_data.ias # indicated airspeed (m/s) h = flight_data.h # Populate GPS sensor data try: vn = flight_data.gps_vn except: vn = flight_data.vn try: ve = flight_data.gps_ve except: ve = flight_data.ve try: vd = flight_data.gps_vd except: vd = flight_data.vd lat = flight_data.lat lon = flight_data.lon alt = flight_data.alt # kstart set to when the navigation filter used onboard the aircraft # was initialized and this is accomplished by detecting when navlat is # no longer 0.0. This choice of kstart will ensure the filter being # tested is using the same initialization time step as the onboard # filter allowing for apples to apples comparisons. kstart = (abs(flight_data.navlat) > 0.0).tolist().index(True) k = kstart print('Initialized at Time: %.2f s (k=%i)' % (t[k], k)) # Set previous value of GPS altitude to 0.0. This will be used to # trigger GPS newData flag which is commonly used in our # navigation filters for deciding if the GPS data has been # updated. However, in python we have no log of newData # (typically). So a comparison of current GPS altitude to the # previous epoch's GPS altitude is used to determine if GPS has # been updated. last_gps_alt = -9999.9 # create data structures for ekf processing result = {} result['imu'] = [] result['gps'] = [] result['air'] = [] result['filter'] = [] k = kstart while k < len(t): p, q, r = imu[k, 1:4] ax, ay, az = imu[k, 4:7] hx, hy, hz = imu[k, 7:10] s = [hx, hy, hz, 1.0] #hf = np.dot(mag_affine, s) hf = s imu_pt = IMUdata() imu_pt.time = float(t[k]) imu_pt.p = float(p) imu_pt.q = float(q) imu_pt.r = float(r) imu_pt.ax = float(ax) imu_pt.ay = float(ay) imu_pt.az = float(az) #imu_pt.hx = hx #imu_pt.hy = hy #imu_pt.hz = hz imu_pt.hx = float(hf[0]) imu_pt.hy = float(hf[1]) imu_pt.hz = float(hf[2]) imu_pt.temp = 15.0 result['imu'].append(imu_pt) if abs(alt[k] - last_gps_alt) > 0.0001: last_gps_alt = alt[k] gps_pt = GPSdata() gps_pt.time = float(t[k]) #gps_pt.status = int(status) gps_pt.unix_sec = float(t[k]) gps_pt.lat = float(lat[k]) gps_pt.lon = float(lon[k]) gps_pt.alt = float(alt[k]) gps_pt.vn = float(vn[k]) gps_pt.ve = float(ve[k]) gps_pt.vd = float(vd[k]) gps_pt.sats = 8 # force a reasonable value (not logged?) result['gps'].append(gps_pt) air_pt = Airdata() air_pt.time = float(t[k]) air_pt.airspeed = float(flight_data.ias[k]*mps2kt) air_pt.altitude = float(flight_data.h[k]) result['air'].append(air_pt) nav = NAVdata() nav.time = float(t[k]) nav.lat = float(flight_data.navlat[k]) nav.lon = float(flight_data.navlon[k]) nav.alt = float(flight_data.navalt[k]) nav.vn = float(flight_data.navvn[k]) nav.ve = float(flight_data.navve[k]) nav.vd = float(flight_data.navvd[k]) nav.phi = float(flight_data.phi[k]) nav.the = float(flight_data.theta[k]) nav.psi = float(flight_data.psi[k]) result['filter'].append(nav) k += 1 dir = os.path.dirname(mat_filename) print 'dir:', dir filename = os.path.join(dir, 'imu-0.txt') f = open(filename, 'w') for imupt in result['imu']: line = [ '%.5f' % imupt.time, '%.4f' % imupt.p, '%.4f' % imupt.q, '%.4f' % imupt.r, '%.4f' % imupt.ax, '%.4f' % imupt.ay, '%.4f' % imupt.az, '%.4f' % imupt.hx, '%.4f' % imupt.hy, '%.4f' % imupt.hz, '%.4f' % imupt.temp, '0' ] f.write(','.join(line) + '\n') filename = os.path.join(dir, 'gps-0.txt') f = open(filename, 'w') for gpspt in result['gps']: line = [ '%.5f' % gpspt.time, '%.10f' % gpspt.lat, '%.10f' % gpspt.lon, '%.4f' % gpspt.alt, '%.4f' % gpspt.vn, '%.4f' % gpspt.ve, '%.4f' % gpspt.vd, '%.4f' % gpspt.time, '8', '0' ] f.write(','.join(line) + '\n') filename = os.path.join(dir, 'filter-0.txt') f = open(filename, 'w') r2d = 180.0 / math.pi for filtpt in result['filter']: line = [ '%.5f' % filtpt.time, '%.10f' % filtpt.lat, '%.10f' % filtpt.lon, '%.4f' % filtpt.alt, '%.4f' % filtpt.vn, '%.4f' % filtpt.ve, '%.4f' % filtpt.vd, '%.4f' % (filtpt.phi*r2d), '%.4f' % (filtpt.the*r2d), '%.4f' % (filtpt.psi*r2d), '0' ] f.write(','.join(line) + '\n') return result
def load(flight_dir, recalibrate=None): result = {} # load imu/gps data files imu_file = flight_dir + "/imu-0.txt" imucal_json = flight_dir + "/imucal.json" imucal_xml = flight_dir + "/imucal.xml" gps_file = flight_dir + "/gps-0.txt" air_file = flight_dir + "/air-0.txt" filter_file = flight_dir + "/filter-0.txt" pilot_file = flight_dir + "/pilot-0.txt" act_file = flight_dir + "/act-0.txt" ap_file = flight_dir + "/ap-0.txt" imu_bias_file = flight_dir + "/imubias.txt" # HEY: in the latest aura code, calibrated magnetometer is logged, # not raw magnetometer, so we don't need to correct here. We # could 'back correct' if we wanted original values for some # reason (using the calibration matrix saved with each flight # log.) # # vireo_01 # mag_affine = np.array( # [[ 1.6207467043, 0.0228992488, 0.0398638786, 0.1274248748], # [-0.0169905025, 1.7164397411, -0.0001290047, -0.1140304977], # [ 0.0424979948, -0.0038515935, 1.7193766423, -0.1449816095], # [ 0. , 0. , 0. , 1. ]] # ) # Tyr # mag_affine = np.array( # [[ 1.810, 0.109, 0.285, -0.237], # [-0.078, 1.931, -0.171, -0.060], # [ 0.008, 0.109, 1.929, 0.085], # [ 0. , 0. , 0. , 1. ]] # ) # telemaster apm2_101 mag_affine = np.array( [[ 0.0026424919, 0.0001334248, 0.0000984977, -0.2235908546], [-0.000081925 , 0.0026419229, 0.0000751835, -0.0010757621], [ 0.0000219407, 0.0000560341, 0.002541171 , 0.040221458 ], [ 0. , 0. , 0. , 1. ]] ) # skywalker apm2_105 # mag_affine = np.array( # [[ 0.0025834778, 0.0001434776, 0.0001434961, -0.7900775707 ], # [-0.0001903118, 0.0024796553, 0.0001365238, 0.1881142449 ], # [ 0.0000556437, 0.0001329724, 0.0023791184, 0.1824851582, ], # [ 0.0000000000, 0.0000000000, 0.0000000000, 1.0000000000 ]] # ) #np.set_printoptions(precision=10,suppress=True) #print mag_affine result['imu'] = [] fimu = fileinput.input(imu_file) for line in fimu: tokens = re.split('[,\s]+', line.rstrip()) #s = [float(tokens[7]), float(tokens[8]), float(tokens[9]), 1.0] #hf = np.dot(mag_affine, s) #print hf imu = IMUdata() imu.time = float(tokens[0]) imu.p = float(tokens[1]) imu.q = float(tokens[2]) imu.r = float(tokens[3]) imu.ax = float(tokens[4]) imu.ay = float(tokens[5]) imu.az = float(tokens[6]) imu.hx = float(tokens[7]) imu.hy = float(tokens[8]) imu.hz = float(tokens[9]) imu.temp = float(tokens[10]) result['imu'].append( imu ) result['gps'] = [] fgps = fileinput.input(gps_file) last_time = -1.0 for line in fgps: # Note: the aura logs unix time of the gps record, not tow, # but for the purposes of the insgns algorithm, it's only # important to have a properly incrementing clock, it doesn't # really matter what the zero reference point of time is. tokens = re.split('[,\s]+', line.rstrip()) time = float(tokens[0]) sats = int(tokens[8]) if sats >= 5 and time > last_time: gps = GPSdata() gps.time = time gps.unix_sec = float(tokens[7]) gps.lat = float(tokens[1]) gps.lon = float(tokens[2]) gps.alt = float(tokens[3]) gps.vn = float(tokens[4]) gps.ve = float(tokens[5]) gps.vd = float(tokens[6]) gps.sats = sats result['gps'].append(gps) last_time = time if os.path.exists(air_file): result['air'] = [] fair = fileinput.input(air_file) for line in fair: tokens = re.split('[,\s]+', line.rstrip()) air = Airdata() air.time = float(tokens[0]) air.static_press = float(tokens[1]) air.diff_press = 0.0 # not directly available in flight log air.temp = float(tokens[2]) air.airspeed = float(tokens[3]) air.alt_press = float(tokens[4]) air.alt_true = float(tokens[5]) result['air'].append( air ) # load filter records if they exist (for comparison purposes) result['filter'] = [] ffilter = fileinput.input(filter_file) for line in ffilter: tokens = re.split('[,\s]+', line.rstrip()) lat = float(tokens[1]) lon = float(tokens[2]) if abs(lat) > 0.0001 and abs(lon) > 0.0001: nav = NAVdata() nav.time = float(tokens[0]) nav.lat = lat*d2r nav.lon = lon*d2r nav.alt = float(tokens[3]) nav.vn = float(tokens[4]) nav.ve = float(tokens[5]) nav.vd = float(tokens[6]) nav.phi = float(tokens[7])*d2r nav.the = float(tokens[8])*d2r psi = float(tokens[9]) if psi > 180.0: psi = psi - 360.0 if psi < -180.0: psi = psi + 360.0 nav.psi = psi*d2r result['filter'].append(nav) if os.path.exists(pilot_file): result['pilot'] = [] fpilot = fileinput.input(pilot_file) for line in fpilot: tokens = re.split('[,\s]+', line.rstrip()) pilot = Controldata() pilot.time = float(tokens[0]) pilot.aileron = float(tokens[1]) pilot.elevator = float(tokens[2]) pilot.throttle = float(tokens[3]) pilot.rudder = float(tokens[4]) pilot.gear = float(tokens[5]) pilot.flaps = float(tokens[6]) pilot.aux1 = float(tokens[7]) pilot.auto_manual = float(tokens[8]) result['pilot'].append(pilot) if os.path.exists(act_file): result['act'] = [] fact = fileinput.input(act_file) for line in fact: tokens = re.split('[,\s]+', line.rstrip()) act = Controldata() act.time = float(tokens[0]) act.aileron = float(tokens[1]) act.elevator = float(tokens[2]) act.throttle = float(tokens[3]) act.rudder = float(tokens[4]) act.gear = float(tokens[5]) act.flaps = float(tokens[6]) act.aux1 = float(tokens[7]) act.auto_manual = float(tokens[8]) result['act'].append(act) if os.path.exists(ap_file): result['ap'] = [] fap = fileinput.input(ap_file) for line in fap: tokens = re.split('[,\s]+', line.rstrip()) ap = APdata() ap.time = float(tokens[0]) ap.hdg = float(tokens[1]) ap.roll = float(tokens[2]) ap.alt = float(tokens[3]) ap.pitch = float(tokens[5]) ap.speed = float(tokens[7]) #ap.flight_time = float(tokens[8]) #ap.target_wp = int(tokens[9]) #ap.wp_lon = float(tokens[10]) #ap.wp_lat = float(tokens[11]) #ap.wp_index = int(tokens[12]) #ap.route_size = int(tokens[13]) result['ap'].append(ap) cal = imucal.Calibration() if os.path.exists(imucal_json): imucal_file = imucal_json elif os.path.exists(imucal_xml): imucal_file = imucal_xml else: imucal_file = None if imucal_file: cal.load(imucal_file) print 'back correcting imu data (to get original raw values)' result['imu'] = cal.back_correct(result['imu']) if recalibrate: print 'recalibrating imu data using alternate calibration file:', recalibrate rcal = imucal.Calibration() rcal.load(recalibrate) result['imu'] = rcal.correct(result['imu']) return result
def load(csv_base): result = {} comb_path = csv_base + '_sensor_combined_0.csv' gps_path = csv_base + '_vehicle_gps_position_0.csv' att_path = csv_base + '_vehicle_attitude_0.csv' pos_path = csv_base + '_vehicle_global_position_0.csv' result['imu'] = [] with open(comb_path, 'rb') as f: reader = csv.DictReader(f) for row in reader: imu = IMUdata() imu.time = float(row['timestamp']) / 1000000.0 imu.p = float(row['gyro_rad[0]']) imu.q = float(row['gyro_rad[1]']) imu.r = float(row['gyro_rad[2]']) imu.ax = float(row['accelerometer_m_s2[0]']) imu.ay = float(row['accelerometer_m_s2[1]']) imu.az = float(row['accelerometer_m_s2[2]']) hx = float(row['magnetometer_ga[0]']) hy = float(row['magnetometer_ga[0]']) hz = float(row['magnetometer_ga[0]']) hf = np.array([hx, hy, hz]) norm = np.linalg.norm(hf) hf /= norm imu.hx = hf[0] imu.hy = hf[1] imu.hz = hf[2] #print imu.hx, imu.hy, imu.hz imu.temp = 15.0 result['imu'].append(imu) result['gps'] = [] with open(gps_path, 'rb') as f: reader = csv.DictReader(f) for row in reader: gps = GPSdata() gps.time = float(row['timestamp']) / 1000000.0 gps.unix_sec = float(row['time_utc_usec']) / 1000000.0 gps.lat = float(row['lat']) / 1e7 gps.lon = float(row['lon']) / 1e7 gps.alt = float(row['alt']) / 1e3 # print gps.lat, gps.lon, gps.alt gps.vn = float(row['vel_n_m_s']) gps.ve = float(row['vel_e_m_s']) gps.vd = float(row['vel_d_m_s']) gps.sats = int(row['satellites_used']) if gps.sats >= 5: result['gps'].append(gps) # result['air'] = [] # with open(gps_path, 'rb') as f: # reader = csv.DictReader(f) # for row in reader: # air = Airdata() # air.time = imu.time # air.static_press = float(row['SENS_BaroPres']) # air.diff_press = float(row['SENS_DiffPres']) # air.temp = float(row['AIRS_AirTemp']) # air.airspeed = float(row['AIRS_IndSpeed']) # air.alt_press = float(row['SENS_BaroAlt']) # air.alt_true = gps.alt # result['air'].append( air ) att = [] with open(att_path, 'rb') as f: reader = csv.DictReader(f) for row in reader: time = float(row['timestamp']) / 1000000.0 q = [ float(row['q[0]']), float(row['q[1]']), float(row['q[2]']), float(row['q[3]']) ] # either of these will work ... (roll, pitch, yaw) = px4_quat2euler(q) att.append([time, yaw, pitch, roll]) pos = [] with open(pos_path, 'rb') as f: reader = csv.DictReader(f) for row in reader: time = float(row['timestamp']) / 1000000.0 lat = float(row['lat']) * d2r lon = float(row['lon']) * d2r alt = float(row['alt']) vn = float(row['vel_n']) ve = float(row['vel_e']) vd = float(row['vel_d']) pos.append([time, lat, lon, alt, vn, ve, vd]) pos_array = np.array(pos) lat_interp = interpolate.interp1d(pos_array[:, 0], pos_array[:, 1], bounds_error=False, fill_value='extrapolate') lon_interp = interpolate.interp1d(pos_array[:, 0], pos_array[:, 2], bounds_error=False, fill_value='extrapolate') alt_interp = interpolate.interp1d(pos_array[:, 0], pos_array[:, 3], bounds_error=False, fill_value='extrapolate') vn_interp = interpolate.interp1d(pos_array[:, 0], pos_array[:, 4], bounds_error=False, fill_value=0.0) ve_interp = interpolate.interp1d(pos_array[:, 0], pos_array[:, 5], bounds_error=False, fill_value=0.0) vd_interp = interpolate.interp1d(pos_array[:, 0], pos_array[:, 6], bounds_error=False, fill_value=0.0) result['filter'] = [] for a in att: nav = NAVdata() nav.time = a[0] nav.lat = float(lat_interp(nav.time)) nav.lon = float(lon_interp(nav.time)) nav.alt = float(alt_interp(nav.time)) nav.vn = float(vn_interp(nav.time)) nav.ve = float(ve_interp(nav.time)) nav.vd = float(vd_interp(nav.time)) nav.phi = a[3] nav.the = a[2] nav.psi = a[1] result['filter'].append(nav) #result['pilot'] = [] #result['act'] = [] #result['ap'] = [] return result
def load(mat_filename): # Name of .mat file that exists in the directory defined above and # has the flight_data and flight_info structures filepath = mat_filename # Load Flight Data: ## IMPORTANT to have the .mat file in the # flight_data and flight_info structures for this function ## data = sio.loadmat(filepath, struct_as_record=False, squeeze_me=True) print 'Loaded Data Summary' print '* File: %s' % filepath.split(os.path.sep)[-1] try: flight_data, flight_info = data['flight_data'], data['flight_info'] print('* Date: %s' % flight_info.date) print('* Aircraft: %s' % flight_info.aircraft) except KeyError: print 'KeyError' # Convert from Python dictionary to struct-like before flight_data = dict2struct() for k in data: exec("flight_data.%s = data['%s']" % (k, k)) del (data) # Add both names for pitch: the and theta try: flight_data.theta = flight_data.the except AttributeError: pass # Fill in time data t = flight_data.time print 't:', t # Magnetometer data - not used hence don't trust hm = np.vstack((flight_data.hx, -flight_data.hy, -flight_data.hz)).T # Geri mag calibration mag_affine = np.array( [[4.3374191736, 0.9527668819, 0.2106929615, 0.0649324241], [-3.7617930866, 6.2839014058, -3.5707398622, 2.1616165305], [-0.8688354599, 0.2205650877, 4.7466115481, -2.7041600008], [0., 0., 0., 1.]]) # Populate IMU Data imu = np.vstack( (t, flight_data.p, flight_data.q, flight_data.r, flight_data.ax, flight_data.ay, flight_data.az, hm[:, 0], hm[:, 1], hm[:, 2])).T # Note that accelerometer and gyro measurements logged by UAV # after 11/17/2011 flight (seemingly, see # http://trac.umnaem.webfactional.com/wiki/FlightReports/2011_11_17) # have the nav-estimated bias removed before datalogging. So to work with raw # imu-data, we add back the on-board estimated biases. if not FLAG_UNBIASED_IMU: try: imu[:, 1:4] += np.vstack( (flight_data.p_bias, flight_data.q_bias, flight_data.r_bias)).T imu[:, 4:7] += np.vstack((flight_data.ax_bias, flight_data.ay_bias, flight_data.az_bias)).T except AttributeError: print('Note: On board estimated bias not found.') # Air Data ias = flight_data.ias # indicated airspeed (m/s) h = flight_data.h # Populate GPS sensor data try: vn = flight_data.gps_vn except: vn = flight_data.vn try: ve = flight_data.gps_ve except: ve = flight_data.ve try: vd = flight_data.gps_vd except: vd = flight_data.vd lat = flight_data.lat lon = flight_data.lon alt = flight_data.alt # kstart set to when the navigation filter used onboard the aircraft # was initialized and this is accomplished by detecting when navlat is # no longer 0.0. This choice of kstart will ensure the filter being # tested is using the same initialization time step as the onboard # filter allowing for apples to apples comparisons. kstart = (abs(flight_data.navlat) > 0.0).tolist().index(True) k = kstart print('Initialized at Time: %.2f s (k=%i)' % (t[k], k)) # Set previous value of GPS altitude to 0.0. This will be used to # trigger GPS newData flag which is commonly used in our # navigation filters for deciding if the GPS data has been # updated. However, in python we have no log of newData # (typically). So a comparison of current GPS altitude to the # previous epoch's GPS altitude is used to determine if GPS has # been updated. last_gps_alt = -9999.9 # create data structures for ekf processing result = {} result['imu'] = [] result['gps'] = [] result['air'] = [] result['filter'] = [] k = kstart while k < len(t): p, q, r = imu[k, 1:4] ax, ay, az = imu[k, 4:7] hx, hy, hz = imu[k, 7:10] s = [hx, hy, hz, 1.0] #hf = np.dot(mag_affine, s) hf = s imu_pt = IMUdata() imu_pt.time = float(t[k]) imu_pt.p = float(p) imu_pt.q = float(q) imu_pt.r = float(r) imu_pt.ax = float(ax) imu_pt.ay = float(ay) imu_pt.az = float(az) #imu_pt.hx = hx #imu_pt.hy = hy #imu_pt.hz = hz imu_pt.hx = float(hf[0]) imu_pt.hy = float(hf[1]) imu_pt.hz = float(hf[2]) imu_pt.temp = 15.0 result['imu'].append(imu_pt) if abs(alt[k] - last_gps_alt) > 0.0001: last_gps_alt = alt[k] gps_pt = GPSdata() gps_pt.time = float(t[k]) #gps_pt.status = int(status) gps_pt.unix_sec = float(t[k]) gps_pt.lat = float(lat[k]) gps_pt.lon = float(lon[k]) gps_pt.alt = float(alt[k]) gps_pt.vn = float(vn[k]) gps_pt.ve = float(ve[k]) gps_pt.vd = float(vd[k]) gps_pt.sats = 8 # force a reasonable value (not logged?) result['gps'].append(gps_pt) air_pt = Airdata() air_pt.time = float(t[k]) air_pt.airspeed = float(flight_data.ias[k] * mps2kt) air_pt.altitude = float(flight_data.h[k]) result['air'].append(air_pt) nav = NAVdata() nav.time = float(t[k]) nav.lat = float(flight_data.navlat[k]) nav.lon = float(flight_data.navlon[k]) nav.alt = float(flight_data.navalt[k]) nav.vn = float(flight_data.navvn[k]) nav.ve = float(flight_data.navve[k]) nav.vd = float(flight_data.navvd[k]) nav.phi = float(flight_data.phi[k]) nav.the = float(flight_data.theta[k]) nav.psi = float(flight_data.psi[k]) result['filter'].append(nav) k += 1 dir = os.path.dirname(mat_filename) print 'dir:', dir filename = os.path.join(dir, 'imu-0.txt') f = open(filename, 'w') for imupt in result['imu']: line = [ '%.5f' % imupt.time, '%.4f' % imupt.p, '%.4f' % imupt.q, '%.4f' % imupt.r, '%.4f' % imupt.ax, '%.4f' % imupt.ay, '%.4f' % imupt.az, '%.4f' % imupt.hx, '%.4f' % imupt.hy, '%.4f' % imupt.hz, '%.4f' % imupt.temp, '0' ] f.write(','.join(line) + '\n') filename = os.path.join(dir, 'gps-0.txt') f = open(filename, 'w') for gpspt in result['gps']: line = [ '%.5f' % gpspt.time, '%.10f' % gpspt.lat, '%.10f' % gpspt.lon, '%.4f' % gpspt.alt, '%.4f' % gpspt.vn, '%.4f' % gpspt.ve, '%.4f' % gpspt.vd, '%.4f' % gpspt.time, '8', '0' ] f.write(','.join(line) + '\n') filename = os.path.join(dir, 'filter-0.txt') f = open(filename, 'w') r2d = 180.0 / math.pi for filtpt in result['filter']: line = [ '%.5f' % filtpt.time, '%.10f' % filtpt.lat, '%.10f' % filtpt.lon, '%.4f' % filtpt.alt, '%.4f' % filtpt.vn, '%.4f' % filtpt.ve, '%.4f' % filtpt.vd, '%.4f' % (filtpt.phi * r2d), '%.4f' % (filtpt.the * r2d), '%.4f' % (filtpt.psi * r2d), '0' ] f.write(','.join(line) + '\n') return result
def load(mat_filename): # Name of .mat file that exists in the directory defined above and # has the flight_data and flight_info structures filepath = mat_filename # Load Flight Data: ## IMPORTANT to have the .mat file in the # flight_data and flight_info structures for this function ## data = sio.loadmat(filepath, struct_as_record=False, squeeze_me=True) for keys in data: print keys # print 'Loaded Data Summary' # print '* File: %s' % filepath.split(os.path.sep)[-1] # # Fill in time data # t = flight_data.time # print 't:', t # # Magnetometer data - not used hence don't trust # hm = np.vstack((flight_data.hx, -flight_data.hy, -flight_data.hz)).T # # Geri mag calibration # mag_affine = np.array( # [[ 4.3374191736, 0.9527668819, 0.2106929615, 0.0649324241], # [-3.7617930866, 6.2839014058, -3.5707398622, 2.1616165305], # [-0.8688354599, 0.2205650877, 4.7466115481, -2.7041600008], # [ 0. , 0. , 0. , 1. ]] # ) # # Populate IMU Data # imu = np.vstack((t, flight_data.p, flight_data.q, flight_data.r, # flight_data.ax, flight_data.ay, flight_data.az, # hm[:,0], hm[:,1], hm[:,2])).T # # Note that accelerometer and gyro measurements logged by UAV # # after 11/17/2011 flight (seemingly, see # # http://trac.umnaem.webfactional.com/wiki/FlightReports/2011_11_17) # # have the nav-estimated bias removed before datalogging. So to work with raw # # imu-data, we add back the on-board estimated biases. # if not FLAG_UNBIASED_IMU: # try: # imu[:, 1:4] += np.vstack((flight_data.p_bias, # flight_data.q_bias, # flight_data.r_bias)).T # imu[:, 4:7] += np.vstack((flight_data.ax_bias, # flight_data.ay_bias, # flight_data.az_bias)).T # except AttributeError: # print('Note: On board estimated bias not found.') # # Air Data # ias = flight_data.ias # indicated airspeed (m/s) # h = flight_data.h # # Populate GPS sensor data # try: # vn = flight_data.gps_vn # except: # vn = flight_data.vn # try: # ve = flight_data.gps_ve # except: # ve = flight_data.ve # try: # vd = flight_data.gps_vd # except: # vd = flight_data.vd # lat = flight_data.lat # lon = flight_data.lon # alt = flight_data.alt # # kstart set to when the navigation filter used onboard the aircraft # # was initialized and this is accomplished by detecting when navlat is # # no longer 0.0. This choice of kstart will ensure the filter being # # tested is using the same initialization time step as the onboard # # filter allowing for apples to apples comparisons. # kstart = (abs(flight_data.navlat) > 0.0).tolist().index(True) # k = kstart # print('Initialized at Time: %.2f s (k=%i)' % (t[k], k)) # # Set previous value of GPS altitude to 0.0. This will be used to # # trigger GPS newData flag which is commonly used in our # # navigation filters for deciding if the GPS data has been # # updated. However, in python we have no log of newData # # (typically). So a comparison of current GPS altitude to the # # previous epoch's GPS altitude is used to determine if GPS has # # been updated. # last_gps_alt = -9999.9 # create data structures for ekf processing result = {} result['imu'] = [] result['gps'] = [] result['air'] = [] result['filter'] = [] last_gps_lon = -9999.0 last_gps_lat = -9999.0 for i in range(len(data['Time_s'])): # p, q, r = imu[k, 1:4] # ax, ay, az = imu[k, 4:7] # hx, hy, hz = imu[k, 7:10] s = [ data['IMU_Hx_uT'][i], data['IMU_Hy_uT'][i], data['IMU_Hz_uT'][i], 1.0 ] # hf = np.dot(mag_affine, s) # apply mag calibration hf = s imu_pt = IMUdata() imu_pt.time = data['Time_s'][i] imu_pt.p = data['IMU_Gx_rads'][i] imu_pt.q = data['IMU_Gy_rads'][i] imu_pt.r = data['IMU_Gz_rads'][i] imu_pt.ax = data['IMU_Ax_mss'][i] imu_pt.ay = data['IMU_Ay_mss'][i] imu_pt.az = data['IMU_Az_mss'][i] imu_pt.hx = float(hf[0]) imu_pt.hy = float(hf[1]) imu_pt.hz = float(hf[2]) imu_pt.temp = data['IMU_Temp_C'][i] result['imu'].append(imu_pt) lat = data['GPS_Latitude'][i] * r2d lon = data['GPS_Longitude'][i] * r2d #print lon,lat if abs(lat - last_gps_lat) > 0.0000000001 or abs( lon - last_gps_lon) > 0.0000000000001: last_gps_lat = lat last_gps_lon = lon gps_pt = GPSdata() gps_pt.time = data['Time_s'][i] #gps_pt.status = something gps_pt.unix_sec = data['Time_s'][ i] # hack an incrementing time here gps_pt.lat = lat gps_pt.lon = lon gps_pt.alt = data['GPS_Altitude'][i] gps_pt.vn = data['GPS_North_Velocity'][i] gps_pt.ve = data['GPS_East_Velocity'][i] gps_pt.vd = data['GPS_Down_Velocity'][i] gps_pt.sats = int(data['GPS_NumberSatellites'][i]) result['gps'].append(gps_pt) pitot_calibrate = 1.0 diff_pa = data['Pitot_DiffPressure_Pressure_Pa'][i] if diff_pa < 0: diff_pa = 0.0 static_pa = data['Pitot_StaticPressure_Pressure_Pa'][i] airspeed_mps = math.sqrt(2 * diff_pa / 1.225) * pitot_calibrate P0 = 1013.25 T = 15.0 P = static_pa / 100.0 # convert to mbar tmp1 = math.pow((P0 / P), 1.0 / 5.257) - 1.0 alt_m = (tmp1 * (T + 273.15)) / 0.0065 air_pt = Airdata() air_pt.time = data['Time_s'][i] air_pt.airspeed = airspeed_mps * mps2kt air_pt.altitude = alt_m result['air'].append(air_pt) # nav = NAVdata() # nav.time = float(t[k]) # nav.lat = float(flight_data.navlat[k]) # nav.lon = float(flight_data.navlon[k]) # nav.alt = float(flight_data.navalt[k]) # nav.vn = float(flight_data.navvn[k]) # nav.ve = float(flight_data.navve[k]) # nav.vd = float(flight_data.navvd[k]) # nav.phi = float(flight_data.phi[k]) # nav.the = float(flight_data.theta[k]) # nav.psi = float(flight_data.psi[k]) # result['filter'].append(nav) dir = os.path.dirname(mat_filename) print 'dir:', dir filename = os.path.join(dir, 'imu-0.txt') f = open(filename, 'w') for imupt in result['imu']: line = [ '%.5f' % imupt.time, '%.4f' % imupt.p, '%.4f' % imupt.q, '%.4f' % imupt.r, '%.4f' % imupt.ax, '%.4f' % imupt.ay, '%.4f' % imupt.az, '%.4f' % imupt.hx, '%.4f' % imupt.hy, '%.4f' % imupt.hz, '%.4f' % imupt.temp, '0' ] f.write(','.join(line) + '\n') filename = os.path.join(dir, 'gps-0.txt') f = open(filename, 'w') for gpspt in result['gps']: line = [ '%.5f' % gpspt.time, '%.10f' % gpspt.lat, '%.10f' % gpspt.lon, '%.4f' % gpspt.alt, '%.4f' % gpspt.vn, '%.4f' % gpspt.ve, '%.4f' % gpspt.vd, '%.4f' % gpspt.time, '8', '0' ] f.write(','.join(line) + '\n') if 'filter' in result: filename = os.path.join(dir, 'filter-0.txt') f = open(filename, 'w') for filtpt in result['filter']: line = [ '%.5f' % filtpt.time, '%.10f' % filtpt.lat, '%.10f' % filtpt.lon, '%.4f' % filtpt.alt, '%.4f' % filtpt.vn, '%.4f' % filtpt.ve, '%.4f' % filtpt.vd, '%.4f' % (filtpt.phi * r2d), '%.4f' % (filtpt.the * r2d), '%.4f' % (filtpt.psi * r2d), '0' ] f.write(','.join(line) + '\n') return result
def load(flight_dir, recalibrate=None): result = {} # load imu/gps data files imu_file = flight_dir + "/imu-0.txt" imucal_json = flight_dir + "/imucal.json" imucal_xml = flight_dir + "/imucal.xml" gps_file = flight_dir + "/gps-0.txt" air_file = flight_dir + "/air-0.txt" filter_file = flight_dir + "/filter-0.txt" filter_post = flight_dir + "/filter-post.txt" pilot_file = flight_dir + "/pilot-0.txt" act_file = flight_dir + "/act-0.txt" ap_file = flight_dir + "/ap-0.txt" imu_bias_file = flight_dir + "/imubias.txt" # HEY: in the latest aura code, calibrated magnetometer is logged, # not raw magnetometer, so we don't need to correct here. We # could 'back correct' if we wanted original values for some # reason (using the calibration matrix saved with each flight # log.) # # vireo_01 # mag_affine = np.array( # [[ 1.6207467043, 0.0228992488, 0.0398638786, 0.1274248748], # [-0.0169905025, 1.7164397411, -0.0001290047, -0.1140304977], # [ 0.0424979948, -0.0038515935, 1.7193766423, -0.1449816095], # [ 0. , 0. , 0. , 1. ]] # ) # Tyr # mag_affine = np.array( # [[ 1.810, 0.109, 0.285, -0.237], # [-0.078, 1.931, -0.171, -0.060], # [ 0.008, 0.109, 1.929, 0.085], # [ 0. , 0. , 0. , 1. ]] # ) # telemaster apm2_101 mag_affine = np.array( [[0.0026424919, 0.0001334248, 0.0000984977, -0.2235908546], [-0.000081925, 0.0026419229, 0.0000751835, -0.0010757621], [0.0000219407, 0.0000560341, 0.002541171, 0.040221458], [0., 0., 0., 1.]]) # skywalker apm2_105 # mag_affine = np.array( # [[ 0.0025834778, 0.0001434776, 0.0001434961, -0.7900775707 ], # [-0.0001903118, 0.0024796553, 0.0001365238, 0.1881142449 ], # [ 0.0000556437, 0.0001329724, 0.0023791184, 0.1824851582, ], # [ 0.0000000000, 0.0000000000, 0.0000000000, 1.0000000000 ]] # ) #np.set_printoptions(precision=10,suppress=True) #print mag_affine result['imu'] = [] fimu = fileinput.input(imu_file) for line in fimu: tokens = re.split('[,\s]+', line.rstrip()) #s = [float(tokens[7]), float(tokens[8]), float(tokens[9]), 1.0] #hf = np.dot(mag_affine, s) #print hf imu = IMUdata() imu.time = float(tokens[0]) imu.p = float(tokens[1]) imu.q = float(tokens[2]) imu.r = float(tokens[3]) imu.ax = float(tokens[4]) imu.ay = float(tokens[5]) imu.az = float(tokens[6]) imu.hx = float(tokens[7]) imu.hy = float(tokens[8]) imu.hz = float(tokens[9]) imu.temp = float(tokens[10]) result['imu'].append(imu) result['gps'] = [] fgps = fileinput.input(gps_file) last_time = -1.0 for line in fgps: # Note: the aura logs unix time of the gps record, not tow, # but for the purposes of the insgns algorithm, it's only # important to have a properly incrementing clock, it doesn't # really matter what the zero reference point of time is. tokens = re.split('[,\s]+', line.rstrip()) time = float(tokens[0]) sats = int(tokens[8]) if sats >= 5 and time > last_time: gps = GPSdata() gps.time = time gps.unix_sec = float(tokens[7]) gps.lat = float(tokens[1]) gps.lon = float(tokens[2]) gps.alt = float(tokens[3]) gps.vn = float(tokens[4]) gps.ve = float(tokens[5]) gps.vd = float(tokens[6]) gps.sats = sats result['gps'].append(gps) last_time = time if os.path.exists(air_file): result['air'] = [] fair = fileinput.input(air_file) for line in fair: tokens = re.split('[,\s]+', line.rstrip()) air = Airdata() air.time = float(tokens[0]) air.static_press = float(tokens[1]) air.diff_press = 0.0 # not directly available in flight log air.temp = float(tokens[2]) air.airspeed = float(tokens[3]) air.alt_press = float(tokens[4]) air.alt_true = float(tokens[5]) result['air'].append(air) # load filter records if they exist (for comparison purposes) result['filter'] = [] ffilter = fileinput.input(filter_file) for line in ffilter: tokens = re.split('[,\s]+', line.rstrip()) lat = float(tokens[1]) lon = float(tokens[2]) if abs(lat) > 0.0001 and abs(lon) > 0.0001: nav = NAVdata() nav.time = float(tokens[0]) nav.lat = lat * d2r nav.lon = lon * d2r nav.alt = float(tokens[3]) nav.vn = float(tokens[4]) nav.ve = float(tokens[5]) nav.vd = float(tokens[6]) nav.phi = float(tokens[7]) * d2r nav.the = float(tokens[8]) * d2r psi = float(tokens[9]) if psi > 180.0: psi = psi - 360.0 if psi < -180.0: psi = psi + 360.0 nav.psi = psi * d2r result['filter'].append(nav) # load filter (post process) records if they exist (for comparison # purposes) if os.path.exists(filter_post): result['filter_post'] = [] ffilter = fileinput.input(filter_post) for line in ffilter: tokens = re.split('[,\s]+', line.rstrip()) lat = float(tokens[1]) lon = float(tokens[2]) if abs(lat) > 0.0001 and abs(lon) > 0.0001: nav = NAVdata() nav.time = float(tokens[0]) nav.lat = lat * d2r nav.lon = lon * d2r nav.alt = float(tokens[3]) nav.vn = float(tokens[4]) nav.ve = float(tokens[5]) nav.vd = float(tokens[6]) nav.phi = float(tokens[7]) * d2r nav.the = float(tokens[8]) * d2r psi = float(tokens[9]) if psi > 180.0: psi = psi - 360.0 if psi < -180.0: psi = psi + 360.0 nav.psi = psi * d2r result['filter_post'].append(nav) if os.path.exists(pilot_file): result['pilot'] = [] fpilot = fileinput.input(pilot_file) for line in fpilot: tokens = re.split('[,\s]+', line.rstrip()) pilot = Controldata() pilot.time = float(tokens[0]) pilot.aileron = float(tokens[1]) pilot.elevator = float(tokens[2]) pilot.throttle = float(tokens[3]) pilot.rudder = float(tokens[4]) pilot.gear = float(tokens[5]) pilot.flaps = float(tokens[6]) pilot.aux1 = float(tokens[7]) pilot.auto_manual = float(tokens[8]) result['pilot'].append(pilot) if os.path.exists(act_file): result['act'] = [] fact = fileinput.input(act_file) for line in fact: tokens = re.split('[,\s]+', line.rstrip()) act = Controldata() act.time = float(tokens[0]) act.aileron = float(tokens[1]) act.elevator = float(tokens[2]) act.throttle = float(tokens[3]) act.rudder = float(tokens[4]) act.gear = float(tokens[5]) act.flaps = float(tokens[6]) act.aux1 = float(tokens[7]) act.auto_manual = float(tokens[8]) result['act'].append(act) if os.path.exists(ap_file): result['ap'] = [] fap = fileinput.input(ap_file) for line in fap: tokens = re.split('[,\s]+', line.rstrip()) ap = APdata() ap.time = float(tokens[0]) ap.hdg = float(tokens[1]) ap.roll = float(tokens[2]) ap.alt = float(tokens[3]) ap.pitch = float(tokens[5]) ap.speed = float(tokens[7]) #ap.flight_time = float(tokens[8]) #ap.target_wp = int(tokens[9]) #ap.wp_lon = float(tokens[10]) #ap.wp_lat = float(tokens[11]) #ap.wp_index = int(tokens[12]) #ap.route_size = int(tokens[13]) result['ap'].append(ap) cal = imucal.Calibration() if os.path.exists(imucal_json): imucal_file = imucal_json elif os.path.exists(imucal_xml): imucal_file = imucal_xml else: imucal_file = None if imucal_file: cal.load(imucal_file) print 'back correcting imu data (to get original raw values)' result['imu'] = cal.back_correct(result['imu']) if recalibrate: print 'recalibrating imu data using alternate calibration file:', recalibrate rcal = imucal.Calibration() rcal.load(recalibrate) result['imu'] = rcal.correct(result['imu']) return result
def load(csv_base): result = {} comb_path = csv_base + '_sensor_combined_0.csv' gps_path = csv_base + '_vehicle_gps_position_0.csv' att_path = csv_base + '_vehicle_attitude_0.csv' pos_path = csv_base + '_vehicle_global_position_0.csv' ap_path = csv_base + '_vehicle_attitude_setpoint_0.csv' air_path = csv_base + '_airspeed_0.csv' act_path = csv_base + '_actuator_outputs_0.csv' filter_post = csv_base + '_filter_post.txt' result['imu'] = [] with open(comb_path, 'rb') as f: reader = csv.DictReader(f) for row in reader: imu = IMUdata() imu.time = float(row['timestamp']) / 1000000.0 imu.p = float(row['gyro_rad[0]']) imu.q = float(row['gyro_rad[1]']) imu.r = float(row['gyro_rad[2]']) imu.ax = float(row['accelerometer_m_s2[0]']) imu.ay = float(row['accelerometer_m_s2[1]']) imu.az = float(row['accelerometer_m_s2[2]']) hx = float(row['magnetometer_ga[0]']) hy = float(row['magnetometer_ga[0]']) hz = float(row['magnetometer_ga[0]']) hf = np.array([hx, hy, hz]) norm = np.linalg.norm(hf) hf /= norm imu.hx = hf[0] imu.hy = hf[1] imu.hz = hf[2] #print imu.hx, imu.hy, imu.hz imu.temp = 15.0 result['imu'].append(imu) result['gps'] = [] with open(gps_path, 'rb') as f: reader = csv.DictReader(f) for row in reader: gps = GPSdata() gps.time = float(row['timestamp']) / 1000000.0 gps.unix_sec = float(row['time_utc_usec']) / 1000000.0 gps.lat = float(row['lat']) / 1e7 gps.lon = float(row['lon']) / 1e7 gps.alt = float(row['alt']) / 1e3 # print gps.lat, gps.lon, gps.alt gps.vn = float(row['vel_n_m_s']) gps.ve = float(row['vel_e_m_s']) gps.vd = float(row['vel_d_m_s']) gps.sats = int(row['satellites_used']) if gps.sats >= 5: result['gps'].append(gps) result['air'] = [] with open(air_path, 'rb') as f: reader = csv.DictReader(f) for row in reader: air = Airdata() air.time = float(row['timestamp']) / 1000000.0 #air.static_press = float(row['SENS_BaroPres']) air.diff_press = float(row['differential_pressure_filtered_pa']) air.temp = float(row['air_temperature_celsius']) air.airspeed = float(row['indicated_airspeed_m_s']) * mps2kt #air.alt_press = float(row['SENS_BaroAlt']) air.alt_true = gps.alt result['air'].append(air) att = [] with open(att_path, 'rb') as f: reader = csv.DictReader(f) for row in reader: time = float(row['timestamp']) / 1000000.0 q = [ float(row['q[0]']), float(row['q[1]']), float(row['q[2]']), float(row['q[3]']) ] # either of these will work ... (roll, pitch, yaw) = px4_quat2euler(q) att.append([time, yaw, pitch, roll]) pos = [] with open(pos_path, 'rb') as f: reader = csv.DictReader(f) for row in reader: time = float(row['timestamp']) / 1000000.0 lat = float(row['lat']) * d2r lon = float(row['lon']) * d2r alt = float(row['alt']) vn = float(row['vel_n']) ve = float(row['vel_e']) vd = float(row['vel_d']) pos.append([time, lat, lon, alt, vn, ve, vd]) pos_array = np.array(pos) lat_interp = interpolate.interp1d(pos_array[:, 0], pos_array[:, 1], bounds_error=False, fill_value='extrapolate') lon_interp = interpolate.interp1d(pos_array[:, 0], pos_array[:, 2], bounds_error=False, fill_value='extrapolate') alt_interp = interpolate.interp1d(pos_array[:, 0], pos_array[:, 3], bounds_error=False, fill_value='extrapolate') vn_interp = interpolate.interp1d(pos_array[:, 0], pos_array[:, 4], bounds_error=False, fill_value=0.0) ve_interp = interpolate.interp1d(pos_array[:, 0], pos_array[:, 5], bounds_error=False, fill_value=0.0) vd_interp = interpolate.interp1d(pos_array[:, 0], pos_array[:, 6], bounds_error=False, fill_value=0.0) if os.path.exists(ap_path): result['ap'] = [] with open(ap_path, 'rb') as f: reader = csv.DictReader(f) for row in reader: ap = APdata() ap.time = float(row['timestamp']) / 1000000.0 ap.hdg = float(row['yaw_body']) * r2d ap.roll = float(row['roll_body']) * r2d ap.pitch = float(row['pitch_body']) * r2d ap.alt = 0 ap.speed = 0 #ap.alt = float(row['GPSP_Alt']) * m2ft #ap.speed = float(row['TECS_AsSP']) * mps2kt result['ap'].append(ap) result['filter'] = [] for a in att: nav = NAVdata() nav.time = a[0] nav.lat = float(lat_interp(nav.time)) nav.lon = float(lon_interp(nav.time)) nav.alt = float(alt_interp(nav.time)) nav.vn = float(vn_interp(nav.time)) nav.ve = float(ve_interp(nav.time)) nav.vd = float(vd_interp(nav.time)) nav.phi = a[3] nav.the = a[2] nav.psi = a[1] result['filter'].append(nav) #result['pilot'] = [] #result['act'] = [] #result['ap'] = [] # load filter (post process) records if they exist (for comparison # purposes) if os.path.exists(filter_post): print "found filter_post.txt file" result['filter_post'] = [] ffilter = fileinput.input(filter_post) for line in ffilter: tokens = re.split('[,\s]+', line.rstrip()) lat = float(tokens[1]) lon = float(tokens[2]) if abs(lat) > 0.0001 and abs(lon) > 0.0001: nav = NAVdata() nav.time = float(tokens[0]) nav.lat = lat * d2r nav.lon = lon * d2r nav.alt = float(tokens[3]) nav.vn = float(tokens[4]) nav.ve = float(tokens[5]) nav.vd = float(tokens[6]) nav.phi = float(tokens[7]) * d2r nav.the = float(tokens[8]) * d2r psi = float(tokens[9]) if psi > 180.0: psi = psi - 360.0 if psi < -180.0: psi = psi + 360.0 nav.psi = psi * d2r result['filter_post'].append(nav) if os.path.exists(act_path): result['act'] = [] with open(act_path, 'rb') as f: reader = csv.DictReader(f) for row in reader: act = Controldata() act.time = float(row['timestamp']) / 1000000.0 ch = [0] * 8 for i in range(len(ch)): pwm = float(row['output[%d]' % i]) ch[i] = (pwm - 1500) / 500 act.aileron = ch[0] act.elevator = ch[1] act.throttle = ch[2] act.rudder = ch[3] act.gear = 0 act.flaps = 0 act.aux1 = 0 act.auto_manual = 0 result['act'].append(act) return result