def calibrate(r, model=None): # load default model if model is None: model = Model.load('models/rover_calibration.pkl') # calibration movements | left & right using only one motor (easier) r.init_log() sleep(1) r.left(2, motor=1) sleep(1) r.left(2, motor=2) sleep(1) # sequence: 1,3 r.right(2, motor=1) sleep(1) r.right(2, motor=2) sleep(1) # sequence: 5,7 # end of calibration movements # get log, process data and remove stops logdata = r.save_log() logdata['fname'] = 'dropme' logdata.index.name = 'time' data = process_df(logdata) preds = data[model.features].groupby(level=['seq']).apply( lambda x: model.labels[model.predict_proba(x).sum(axis=0).argmax()]) # check if movements are correctly calibrated if preds[1] == 'left' and preds[3] == 'left' and preds[ 5] == 'right' and preds[7] == 'right': print "Rover calibrated correctly (Motor1 gpio1_is_fw: %s | Motor2 gpio1_is_fw: %s)" % ( r.m1.gpio1_is_fw, r.m2.gpio1_is_fw) return True else: if preds[1] == 'left' and preds[5] == 'right': r.m2.gpio1_is_fw = not r.m2.gpio1_is_fw print "Rover re-calibrated changing direction of Motor 1, testing..." return calibrate(r, model) elif preds[3] == 'left' and preds[7] == 'right': r.m1.gpio1_is_fw = not r.m1.gpio1_is_fw print "Rover re-calibrated changing direction of Motor 2, testing..." return calibrate(r, model) else: print "Error calibrating" return False
def train_data(): from navigation import r r.m1.use_pwm = False r.m2.use_pwm = False r.init_log() sleep(1) r.left(2) sleep(1) r.right(2) sleep(1) r.fw(2) sleep(1) r.rw(2) sleep(1) r.left(2) sleep(1) r.right(2) sleep(1) r.fw(2) sleep(1) r.rw(2) sleep(1) r.left(2) sleep(1) r.right(2) sleep(1) r.fw(2) sleep(1) r.rw(2) sleep(1) r.save_log(savepath='data/navigation_calibration/')