inputs_composantes_a = [ Args(15,10,20,15),Args(12,5,22,10),Args(5,5,10,10),Args(5,5,5,10),Args(15,10,23,10),Args(15,15,10,12),Args(20,10,15,15) ] inputs_soustraction_a_b = [ Args(15,10,20,15),Args(12,5,22,10),Args(5,5,10,10),Args(5,5,5,10),Args(15,10,23,10),Args(15,15,10,12),Args(20,10,15,15) ] exo_composantes_a = ExerciseFunction( composantes_a, inputs_composantes_a, # show function name in leftmost column call_renderer=CallRenderer(show_function=True), # use pprint to format results result_renderer=PPrintRenderer(width=20), font_size="90%", header_font_size="120%", ) exo_soustraction_a_b = ExerciseFunction( soustraction_a_b, inputs_soustraction_a_b, # show function name in leftmost column call_renderer=CallRenderer(show_function=True), # use pprint to format results result_renderer=PPrintRenderer(width=20), font_size="90%", header_font_size="120%", )
# @END@ wc_inputs = ( Args('''Python is a programming language that lets you work quickly and integrate systems more effectively.'''), Args(''), Args('abc'), Args('abc \t'), Args('a bc \t'), Args(' \tabc \n'), Args(" ".join("abcdefg") + "\n"), Args('''The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. ...'''), ) exo_wc = ExerciseFunction(wc, wc_inputs, call_renderer=PPrintCallRenderer(max_width=40, show_function=True), result_renderer=PPrintRenderer(width=15))
{'n': 'Forbes', 'p': 'Bob'}, {'n': 'Martin', 'p': 'Jeanneot'}, {'n': 'Martin', 'p': 'Jean', 'p2': 'Paul'}, {'n': 'Forbes', 'p': 'Charlie'}, {'n': 'Martin', 'p': 'Jean', 'p2': 'Pierre'}, {'n': 'Dupont', 'p': 'Alexandre'}, {'n': 'Dupont', 'p': 'Laura', 'p2': 'Marie'}, {'n': 'Forbes', 'p': 'John'}, {'n': 'Martin', 'p': 'Jean'}, {'n': 'Dupont', 'p': 'Alex', 'p2': 'Pierre'}]] inputs_tri_custom = [ Args(input) for input in inputs ] exo_tri_custom = ExerciseFunction( tri_custom, inputs_tri_custom, call_renderer=PPrintCallRenderer(width=24), result_renderer=PPrintRenderer(width=30), font_size='small', ) def tri_custom_ko(liste): sort(liste) return liste
scalaire = 0 # sachez reconnaitre ce vilain idiome: for i in range(len(vec1)): scalaire += vec1[i] * vec2[i] return scalaire # @END@ from fractions import Fraction inputs_produit_scalaire = [ Args((1, 2), (3, 4)), Args(range(3, 9), range(5, 11)), Args([-2, 10], [20, 4]), Args([Fraction(2, 15), Fraction(3, 4)], [Fraction(-7, 19), Fraction(4, 13)]), Args([], []), ] exo_produit_scalaire = ExerciseFunction( produit_scalaire, inputs_produit_scalaire, call_renderer=PPrintCallRenderer(width=25), result_renderer=PPrintRenderer(width=25), ) def produit_scalaire_ko(vec1, vec2): return [x * y for x, y in zip(vec1, vec2)]