예제 #1
0
    def test_read_chunk_fail_bad_header(self):
        with ArtificialND2(self.test_file) as artificial:
            fh = artificial.file_handle
            chunk_location = artificial.locations['image_attributes'][0]

            with self.assertRaises(ValueError) as context:
                read_chunk(fh, chunk_location + 1)

            self.assertEquals(str(context.exception), "The ND2 file seems to be corrupted.")
예제 #2
0
    def roi_metadata(self):
        """Contains information about the defined ROIs: shape, position and type (reference/background/stimulation).

        Returns:
            dict: ROI metadata dictionary
        """
        return read_metadata(read_chunk(self._fh, self._label_map.roi_metadata), 1)
예제 #3
0
    def image_attributes(self):
        """Image attributes

        Returns:
            dict: containing the image attributes
        """
        return read_metadata(read_chunk(self._fh, self._label_map.image_attributes), 1)
예제 #4
0
    def image_calibration(self):
        """The amount of pixels per micron.

        Returns:
            dict: pixels per micron
        """
        return read_metadata(read_chunk(self._fh, self._label_map.image_calibration), 1)
예제 #5
0
    def app_info(self):
        """NIS elements application info

        Returns:
            dict: (Version) information of the NIS Elements application

        """
        return xmltodict.parse(read_chunk(self._fh, self._label_map.app_info))
예제 #6
0
    def lut_data(self):
        """LUT information

        Returns:
            dict: LUT information

        """
        return xmltodict.parse(read_chunk(self._fh, self._label_map.lut_data))
예제 #7
0
    def custom_data(self):
        """Custom user data

        Returns:
            dict: custom user data

        """
        return xmltodict.parse(read_chunk(self._fh, self._label_map.custom_data))
예제 #8
0
    def grabber_settings(self):
        """Grabber settings

        Returns:
            dict: Acquisition settings

        """
        return xmltodict.parse(read_chunk(self._fh, self._label_map.grabber_settings))
예제 #9
0
    def image_metadata_sequence(self):
        """Image metadata of the sequence

        Returns:
            dict: containing the metadata

        """
        return read_metadata(read_chunk(self._fh, self._label_map.image_metadata_sequence), 1)
예제 #10
0
    def image_text_info(self):
        """Textual image information

        Returns:
            dict: containing the textual image info

        """
        return read_metadata(read_chunk(self._fh, self._label_map.image_text_info), 1)
예제 #11
0
    def image_metadata(self):
        """Image metadata

        Returns:
            dict: Extra image metadata

        """
        if self._label_map.image_metadata:
            return read_metadata(read_chunk(self._fh, self._label_map.image_metadata), 1)
예제 #12
0
    def _get_raw_image_data(self, image_group_number, channel_offset, height,
                            width):
        """Reads the raw bytes and the timestamp of an image.

        Args:
            image_group_number: the image group number (see _calculate_image_group_number)
            channel_offset: the number of the color channel
            height: the height of the image
            width: the width of the image

        Returns:

        """
        chunk = self._label_map.get_image_data_location(image_group_number)
        data = read_chunk(self._fh, chunk)

        # All images in the same image group share the same timestamp! So if you have complicated image data,
        # your timestamps may not be entirely accurate. Practically speaking though, they'll only be off by a few
        # seconds unless you're doing something super weird.
        timestamp = struct.unpack("d", data[:8])[0]
        image_group_data = array.array("H", data)
        image_data_start = 4 + channel_offset

        # The images for the various channels are interleaved within the same array. For example, the second image
        # of a four image group will be composed of bytes 2, 6, 10, etc. If you understand why someone would design
        # a data structure that way, please send the author of this library a message.
        number_of_true_channels = int(
            len(image_group_data[4:]) / (height * width))
        try:
            image_data = np.reshape(
                image_group_data[image_data_start::number_of_true_channels],
                (height, width))
        except ValueError:
            image_data = np.reshape(
                image_group_data[image_data_start::number_of_true_channels],
                (height,
                 int(
                     round(
                         len(image_group_data[
                             image_data_start::number_of_true_channels]) /
                         height))))

        # Skip images that are all zeros! This is important, since NIS Elements creates blank "gap" images if you
        # don't have the same number of images each cycle. We discovered this because we only took GFP images every
        # other cycle to reduce phototoxicity, but NIS Elements still allocated memory as if we were going to take
        # them every cycle.
        if np.any(image_data):
            return timestamp, image_data

        # If a blank "gap" image is encountered, generate an array of corresponding height and width to avoid
        # errors with ND2-files with missing frames. Array is filled with nan to reflect that data is missing.
        else:
            empty_frame = np.full((height, width), np.nan)
            warnings.warn(
                'ND2 file contains gap frames which are represented by np.nan-filled arrays; to convert to zeros use e.g. np.nan_to_num(array)'
            )
            return timestamp, image_data
예제 #13
0
    def _parse_events(self):
        """Extract events

        """

        # list of event names manually extracted from an ND2 file that contains all manually
        # insertable events from NIS-Elements software (4.60.00 (Build 1171) Patch 02)
        event_names = {
            1: 'Autofocus',
            7: 'Command Executed',
            9: 'Experiment Paused',
            10: 'Experiment Resumed',
            11: 'Experiment Stopped by User',
            13: 'Next Phase Moved by User',
            14: 'Experiment Paused for Refocusing',
            16: 'External Stimulation',
            33: 'User 1',
            34: 'User 2',
            35: 'User 3',
            36: 'User 4',
            37: 'User 5',
            38: 'User 6',
            39: 'User 7',
            40: 'User 8',
            44: 'No Acquisition Phase Start',
            45: 'No Acquisition Phase End',
            46: 'Hardware Error',
            47: 'N-STORM',
            48: 'Incubation Info',
            49: 'Incubation Error'
        }

        self._metadata_parsed['events'] = []

        events = read_metadata(
            read_chunk(self._fh, self._label_map.image_events), 1)

        if events is None or six.b('RLxExperimentRecord') not in events:
            return

        events = events[six.b('RLxExperimentRecord')][six.b('pEvents')]

        if len(events) == 0:
            return

        for event in events[six.b('')]:
            event_info = {
                'index': event[six.b('I')],
                'time': event[six.b('T')],
                'type': event[six.b('M')],
            }
            if event_info['type'] in event_names.keys():
                event_info['name'] = event_names[event_info['type']]

            self._metadata_parsed['events'].append(event_info)
예제 #14
0
파일: parser.py 프로젝트: shenker/nd2reader
    def _get_raw_image_data(self,
                            image_group_number,
                            channel_offset,
                            height,
                            width,
                            memmap=False):
        """Reads the raw bytes and the timestamp of an image.

        Args:
            image_group_number: the image group number (see _calculate_image_group_number)
            channel_offset: the number of the color channel
            height: the height of the image
            width: the width of the image

        Returns:

        """
        chunk = self._label_map.get_image_data_location(image_group_number)
        data = read_chunk(self._fh, chunk, memmap=memmap)

        # All images in the same image group share the same timestamp! So if you have complicated image data,
        # your timestamps may not be entirely accurate. Practically speaking though, they'll only be off by a few
        # seconds unless you're doing something super weird.
        timestamp = struct.unpack("d", data[:8])[0]
        if memmap:
            image_group_data = data[8:].view(np.uint16)
        else:
            image_group_data = array.array("H", data[8:])

        # The images for the various channels are interleaved within the same array. For example, the second image
        # of a four image group will be composed of bytes 2, 6, 10, etc. If you understand why someone would design
        # a data structure that way, please send the author of this library a message.
        number_of_true_channels = int(len(image_group_data) / (height * width))
        image_data = np.reshape(
            image_group_data[channel_offset::number_of_true_channels],
            (height, width))

        # Skip images that are all zeros! This is important, since NIS Elements creates blank "gap" images if you
        # don't have the same number of images each cycle. We discovered this because we only took GFP images every
        # other cycle to reduce phototoxicity, but NIS Elements still allocated memory as if we were going to take
        # them every cycle.
        return timestamp, image_data
예제 #15
0
    def test_read_chunk(self):
        with ArtificialND2(self.test_file) as artificial:
            fh = artificial.file_handle
            chunk_location = artificial.locations['image_attributes'][0]

            chunk_read = read_chunk(fh, chunk_location)
            real_data = six.BytesIO(artificial.raw_text)

            real_data.seek(chunk_location)

            # The chunk metadata is always 16 bytes long
            chunk_metadata = real_data.read(16)
            header, relative_offset, data_length = struct.unpack("IIQ", chunk_metadata)
            self.assertEquals(header, 0xabeceda)

            # We start at the location of the chunk metadata, skip over the metadata, and then proceed to the
            # start of the actual data field, which is at some arbitrary place after the metadata.
            real_data.seek(chunk_location + 16 + relative_offset)

            real_chunk = real_data.read(data_length)

            self.assertEqual(real_chunk, chunk_read)