### ndio membrane segmentation imports import ndio print ndio.version # Prints version import ndio.remote.OCP as OCP oo = OCP() import ndio.remote.OCPMeta as NDLIMS nn = NDLIMS() ### ### Watershed segmentation imports import numpy as np import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage.morphology import watershed from skimage.feature import peak_local_max ### ######### # ndio demo for membrane segmentation ######### ''' If you're running your own OCP server locally for testing, you can specify a different hostname (instead of http://openconnecto.me) like this: oo = OCP('your_ip_or_hostname.com') ''' '''
### ndio membrane segmentation imports import ndio import ndio.remote.OCP as OCP import ndio.remote.OCPMeta as NDLIMS import ndio.convert.tiff as ndtiff ### ### Create OCP / OCPMeta objects oo = OCP() nn = NDLIMS() ### # Get all tokens tokens = oo.get_public_tokens() # Membrane group image and annotation tokens for membrane image in datamap image_token = 'kasthuri11cc' annotation_token = 'cv_kasthuri11_membrane_2014' # Get channel ROI for token channel_ROI = nn.get_metadata('cv_kasthuri11_membrane_2014')['channels'] # Get membrane ROI coordinates membrane_group_ROI = channel_ROI['image']['rois']['ac4'] # Sets membrane query in Python membrane_query = { 'token': 'cv_kasthuri11_membrane_2014', 'channel': 'image', 'x_start': membrane_group_ROI['x'][0], 'x_stop': membrane_group_ROI['x'][1],
import ndio.remote.OCPMeta as LIMS import json lims = LIMS() secret = "neurodata" filename = 'w.ocp.me.images.json' with open(filename) as data_file: data = json.load(data_file) for project in data: project['secret'] = secret lims.set_metadata(project['token'], project)
# How to grab our data and put it into a .npy file # To load data in code: # # import numpy as np # # membrane_images = np.load('nXp_data.npy') # import ndio import ndio.remote.OCP as OCP oo = OCP() import ndio.remote.OCPMeta as NDLIMS nn = NDLIMS() import ndio.convert.tiff as ndtiff # For export to tiff later import numpy as np print "Done importing packages" tokens = oo.get_public_tokens() image_token = 'kasthuri11cc' annotation_token = 'cv_kasthuri11_membrane_2014' # Get channel ROI for token channel_ROI = nn.get_metadata(annotation_token)['channels'] # Get membrane ROI coordinates
### ndio membrane segmentation imports import ndio import ndio.remote.OCP as OCP import ndio.remote.OCPMeta as NDLIMS import numpy as np ### Create OCP / OCPMeta objects oo = OCP() nn = NDLIMS() ### print "Done importing packages" image_token = "kasthuri11cc" annotation_token = "kasthuri2015_ramon_v" segmentation_token = "ac3ac4" # Get channel ROI for token channel_ROI = nn.get_metadata(segmentation_token)["channels"] # Get membrane ROI coordinates membrane_group_ROI = channel_ROI["ac4_neuron_truth"]["rois"]["ac4"] # Sets membrane query in Python membrane_query = { "token": "ac3ac4", "channel": "ac4_neuron_truth", "x_start": membrane_group_ROI["x"][0], "x_stop": membrane_group_ROI["x"][1], "y_start": membrane_group_ROI["y"][0], "y_stop": membrane_group_ROI["y"][1],
### ndio membrane segmentation imports import ndio print ndio.version # Prints version import ndio.remote.OCP as OCP oo = OCP() import ndio.remote.OCPMeta as NDLIMS nn = NDLIMS() ### ### Watershed segmentation imports import numpy as np import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage.morphology import watershed from skimage.feature import peak_local_max ### ######### # ndio demo for membrane segmentation ######### ''' If you're running your own OCP server locally for testing, you can specify a different hostname (instead of http://openconnecto.me) like this: oo = OCP('your_ip_or_hostname.com') ''' ''' Now we're ready to download data. For this example, we'll download some data