예제 #1
0
 def test_algorithmic_bias_model(self):
     g = nx.complete_graph(100)
     model = opn.AlgorithmicBiasModel(g)
     config = mc.Configuration()
     config.add_model_parameter("epsilon", 0.32)
     config.add_model_parameter("gamma", 1)
     model.set_initial_status(config)
     iterations = model.iteration_bunch(10)
     self.assertEqual(len(iterations), 10)
     iterations = model.iteration_bunch(10, node_status=False)
     self.assertEqual(len(iterations), 10)
예제 #2
0
    def test_algorithmic_bias_model(self):

        for g in get_graph():
            model = opn.AlgorithmicBiasModel(g, seed=0)
            config = mc.Configuration()
            config.add_model_parameter("epsilon", 0.32)
            config.add_model_parameter("gamma", 1)
            model.set_initial_status(config)
            iterations = model.iteration_bunch(10)
            self.assertEqual(len(iterations), 10)
            iterations = model.iteration_bunch(10, node_status=False)
            self.assertEqual(len(iterations), 10)

            _ = model.steady_state(max_iterations=100)
예제 #3
0
    def test_opinion_viz(self):
        g = nx.complete_graph(50)

        model = op.AlgorithmicBiasModel(g)

        # Model configuration
        config = mc.Configuration()
        config.add_model_parameter("epsilon", 0.32)
        config.add_model_parameter("gamma", 0)
        model.set_initial_status(config)

        # Simulation execution
        iterations = model.iteration_bunch(50)

        viz = OpinionEvolution(model, iterations)
        viz.plot("opinion_ev.png")
        os.remove("opinion_ev.png")