class EncDecRNNTModel(ASRModel, ASRModuleMixin): """Base class for encoder decoder RNNT-based models.""" @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] return result def __init__(self, cfg: DictConfig, trainer: Trainer = None): # Get global rank and total number of GPU workers for IterableDataset partitioning, if applicable # Global_rank and local_rank is set by LightningModule in Lightning 1.2.0 self.world_size = 1 if trainer is not None: self.world_size = trainer.num_nodes * trainer.num_gpus super().__init__(cfg=cfg, trainer=trainer) # Initialize components self.preprocessor = EncDecRNNTModel.from_config_dict( self.cfg.preprocessor) self.encoder = EncDecRNNTModel.from_config_dict(self.cfg.encoder) # Update config values required by components dynamically with open_dict(self.cfg.decoder): self.cfg.decoder.vocab_size = len(self.cfg.labels) with open_dict(self.cfg.joint): self.cfg.joint.num_classes = len(self.cfg.labels) self.cfg.joint.vocabulary = self.cfg.labels self.cfg.joint.jointnet.encoder_hidden = self.cfg.model_defaults.enc_hidden self.cfg.joint.jointnet.pred_hidden = self.cfg.model_defaults.pred_hidden self.decoder = EncDecRNNTModel.from_config_dict(self.cfg.decoder) self.joint = EncDecRNNTModel.from_config_dict(self.cfg.joint) # Setup RNNT Loss loss_name, loss_kwargs = self.extract_rnnt_loss_cfg( self.cfg.get("loss", None)) self.loss = RNNTLoss(num_classes=self.joint.num_classes_with_blank - 1, loss_name=loss_name, loss_kwargs=loss_kwargs) if hasattr(self.cfg, 'spec_augment') and self._cfg.spec_augment is not None: self.spec_augmentation = EncDecRNNTModel.from_config_dict( self.cfg.spec_augment) else: self.spec_augmentation = None # Setup decoding objects self.decoding = RNNTDecoding( decoding_cfg=self.cfg.decoding, decoder=self.decoder, joint=self.joint, vocabulary=self.joint.vocabulary, ) # Setup WER calculation self.wer = RNNTWER( decoding=self.decoding, batch_dim_index=0, use_cer=self._cfg.get('use_cer', False), log_prediction=self._cfg.get('log_prediction', True), dist_sync_on_step=True, ) # Whether to compute loss during evaluation if 'compute_eval_loss' in self.cfg: self.compute_eval_loss = self.cfg.compute_eval_loss else: self.compute_eval_loss = True # Setup fused Joint step if flag is set if self.joint.fuse_loss_wer: self.joint.set_loss(self.loss) self.joint.set_wer(self.wer) self.setup_optim_normalization() def setup_optim_normalization(self): """ Helper method to setup normalization of certain parts of the model prior to the optimization step. Supported pre-optimization normalizations are as follows: .. code-block:: yaml # Variation Noise injection model: variational_noise: std: 0.0 start_step: 0 # Joint - Length normalization model: normalize_joint_txu: false # Encoder Network - gradient normalization model: normalize_encoder_norm: false # Decoder / Prediction Network - gradient normalization model: normalize_decoder_norm: false # Joint - gradient normalization model: normalize_joint_norm: false """ # setting up the variational noise for the decoder if hasattr(self.cfg, 'variational_noise'): self._optim_variational_noise_std = self.cfg[ 'variational_noise'].get('std', 0) self._optim_variational_noise_start = self.cfg[ 'variational_noise'].get('start_step', 0) else: self._optim_variational_noise_std = 0 self._optim_variational_noise_start = 0 # Setup normalized gradients for model joint by T x U scaling factor (joint length normalization) self._optim_normalize_joint_txu = self.cfg.get('normalize_joint_txu', False) self._optim_normalize_txu = None # Setup normalized encoder norm for model self._optim_normalize_encoder_norm = self.cfg.get( 'normalize_encoder_norm', False) # Setup normalized decoder norm for model self._optim_normalize_decoder_norm = self.cfg.get( 'normalize_decoder_norm', False) # Setup normalized joint norm for model self._optim_normalize_joint_norm = self.cfg.get( 'normalize_joint_norm', False) def extract_rnnt_loss_cfg(self, cfg: Optional[DictConfig]): """ Helper method to extract the rnnt loss name, and potentially its kwargs to be passed. Args: cfg: Should contain `loss_name` as a string which is resolved to a RNNT loss name. If the default should be used, then `default` can be used. Optionally, one can pass additional kwargs to the loss function. The subdict should have a keyname as follows : `{loss_name}_kwargs`. Note that whichever loss_name is selected, that corresponding kwargs will be selected. For the "default" case, the "{resolved_default}_kwargs" will be used. Examples: .. code-block:: yaml loss_name: "default" warprnnt_numba_kwargs: kwargs2: some_other_val Returns: A tuple, the resolved loss name as well as its kwargs (if found). """ if cfg is None: cfg = DictConfig({}) loss_name = cfg.get("loss_name", "default") if loss_name == "default": loss_name = resolve_rnnt_default_loss_name() loss_kwargs = cfg.get(f"{loss_name}_kwargs", None) logging.info(f"Using RNNT Loss : {loss_name}\n" f"Loss {loss_name}_kwargs: {loss_kwargs}") return loss_name, loss_kwargs @torch.no_grad() def transcribe(self, paths2audio_files: List[str], batch_size: int = 4, return_hypotheses: bool = False) -> List[str]: """ Uses greedy decoding to transcribe audio files. Use this method for debugging and prototyping. Args: paths2audio_files: (a list) of paths to audio files. \ Recommended length per file is between 5 and 25 seconds. \ But it is possible to pass a few hours long file if enough GPU memory is available. batch_size: (int) batch size to use during inference. \ Bigger will result in better throughput performance but would use more memory. return_hypotheses: (bool) Either return hypotheses or text With hypotheses can do some postprocessing like getting timestamp or rescoring Returns: A list of transcriptions in the same order as paths2audio_files """ if paths2audio_files is None or len(paths2audio_files) == 0: return {} # We will store transcriptions here hypotheses = [] # Model's mode and device mode = self.training device = next(self.parameters()).device try: # Switch model to evaluation mode self.eval() # Freeze the encoder and decoder modules self.encoder.freeze() self.decoder.freeze() self.joint.freeze() logging_level = logging.get_verbosity() logging.set_verbosity(logging.WARNING) # Work in tmp directory - will store manifest file there with tempfile.TemporaryDirectory() as tmpdir: with open(os.path.join(tmpdir, 'manifest.json'), 'w') as fp: for audio_file in paths2audio_files: entry = { 'audio_filepath': audio_file, 'duration': 100000, 'text': 'nothing' } fp.write(json.dumps(entry) + '\n') config = { 'paths2audio_files': paths2audio_files, 'batch_size': batch_size, 'temp_dir': tmpdir } temporary_datalayer = self._setup_transcribe_dataloader(config) for test_batch in tqdm(temporary_datalayer, desc="Transcribing"): encoded, encoded_len = self.forward( input_signal=test_batch[0].to(device), input_signal_length=test_batch[1].to(device)) hypotheses += self.decoding.rnnt_decoder_predictions_tensor( encoded, encoded_len, return_hypotheses=return_hypotheses) del encoded del test_batch finally: # set mode back to its original value self.train(mode=mode) logging.set_verbosity(logging_level) if mode is True: self.encoder.unfreeze() self.decoder.unfreeze() self.joint.unfreeze() return hypotheses def change_vocabulary(self, new_vocabulary: List[str], decoding_cfg: Optional[DictConfig] = None): """ Changes vocabulary used during RNNT decoding process. Use this method when fine-tuning a pre-trained model. This method changes only decoder and leaves encoder and pre-processing modules unchanged. For example, you would use it if you want to use pretrained encoder when fine-tuning on data in another language, or when you'd need model to learn capitalization, punctuation and/or special characters. Args: new_vocabulary: list with new vocabulary. Must contain at least 2 elements. Typically, \ this is target alphabet. decoding_cfg: A config for the decoder, which is optional. If the decoding type needs to be changed (from say Greedy to Beam decoding etc), the config can be passed here. Returns: None """ if self.joint.vocabulary == new_vocabulary: logging.warning( f"Old {self.joint.vocabulary} and new {new_vocabulary} match. Not changing anything." ) else: if new_vocabulary is None or len(new_vocabulary) == 0: raise ValueError( f'New vocabulary must be non-empty list of chars. But I got: {new_vocabulary}' ) joint_config = self.joint.to_config_dict() new_joint_config = copy.deepcopy(joint_config) new_joint_config['vocabulary'] = new_vocabulary new_joint_config['num_classes'] = len(new_vocabulary) del self.joint self.joint = EncDecRNNTModel.from_config_dict(new_joint_config) decoder_config = self.decoder.to_config_dict() new_decoder_config = copy.deepcopy(decoder_config) new_decoder_config.vocab_size = len(new_vocabulary) del self.decoder self.decoder = EncDecRNNTModel.from_config_dict(new_decoder_config) del self.loss loss_name, loss_kwargs = self.extract_rnnt_loss_cfg( self.cfg.get('loss', None)) self.loss = RNNTLoss( num_classes=self.joint.num_classes_with_blank - 1, loss_name=loss_name, loss_kwargs=loss_kwargs) if decoding_cfg is None: # Assume same decoding config as before decoding_cfg = self.cfg.decoding self.decoding = RNNTDecoding( decoding_cfg=decoding_cfg, decoder=self.decoder, joint=self.joint, vocabulary=self.joint.vocabulary, ) self.wer = RNNTWER( decoding=self.decoding, batch_dim_index=self.wer.batch_dim_index, use_cer=self.wer.use_cer, log_prediction=self.wer.log_prediction, dist_sync_on_step=True, ) # Setup fused Joint step if self.joint.fuse_loss_wer: self.joint.set_loss(self.loss) self.joint.set_wer(self.wer) # Update config with open_dict(self.cfg.joint): self.cfg.joint = new_joint_config with open_dict(self.cfg.decoder): self.cfg.decoder = new_decoder_config with open_dict(self.cfg.decoding): self.cfg.decoding = decoding_cfg ds_keys = ['train_ds', 'validation_ds', 'test_ds'] for key in ds_keys: if key in self.cfg: with open_dict(self.cfg[key]): self.cfg[key]['labels'] = OmegaConf.create( new_vocabulary) logging.info( f"Changed decoder to output to {self.joint.vocabulary} vocabulary." ) def change_decoding_strategy(self, decoding_cfg: DictConfig): """ Changes decoding strategy used during RNNT decoding process. Args: decoding_cfg: A config for the decoder, which is optional. If the decoding type needs to be changed (from say Greedy to Beam decoding etc), the config can be passed here. """ if decoding_cfg is None: # Assume same decoding config as before logging.info( "No `decoding_cfg` passed when changing decoding strategy, using internal config" ) decoding_cfg = self.cfg.decoding self.decoding = RNNTDecoding( decoding_cfg=decoding_cfg, decoder=self.decoder, joint=self.joint, vocabulary=self.joint.vocabulary, ) self.wer = RNNTWER( decoding=self.decoding, batch_dim_index=self.wer.batch_dim_index, use_cer=self.wer.use_cer, log_prediction=self.wer.log_prediction, dist_sync_on_step=True, ) # Setup fused Joint step if self.joint.fuse_loss_wer: self.joint.set_loss(self.loss) self.joint.set_wer(self.wer) # Update config with open_dict(self.cfg.decoding): self.cfg.decoding = decoding_cfg logging.info( f"Changed decoding strategy to \n{OmegaConf.to_yaml(self.cfg.decoding)}" ) def _setup_dataloader_from_config(self, config: Optional[Dict]): if 'augmentor' in config: augmentor = process_augmentations(config['augmentor']) else: augmentor = None # Automatically inject args from model config to dataloader config audio_to_text_dataset.inject_dataloader_value_from_model_config( self.cfg, config, key='sample_rate') audio_to_text_dataset.inject_dataloader_value_from_model_config( self.cfg, config, key='labels') shuffle = config['shuffle'] device = 'gpu' if torch.cuda.is_available() else 'cpu' if config.get('use_dali', False): device_id = self.local_rank if device == 'gpu' else None dataset = audio_to_text_dataset.get_dali_char_dataset( config=config, shuffle=shuffle, device_id=device_id, global_rank=self.global_rank, world_size=self.world_size, preprocessor_cfg=self._cfg.preprocessor, ) return dataset # Instantiate tarred dataset loader or normal dataset loader if config.get('is_tarred', False): if ('tarred_audio_filepaths' in config and config['tarred_audio_filepaths'] is None) or ( 'manifest_filepath' in config and config['manifest_filepath'] is None): logging.warning( "Could not load dataset as `manifest_filepath` was None or " f"`tarred_audio_filepaths` is None. Provided config : {config}" ) return None shuffle_n = config.get('shuffle_n', 4 * config['batch_size']) if shuffle else 0 dataset = audio_to_text_dataset.get_tarred_char_dataset( config=config, shuffle_n=shuffle_n, global_rank=self.global_rank, world_size=self.world_size, augmentor=augmentor, ) shuffle = False else: if 'manifest_filepath' in config and config[ 'manifest_filepath'] is None: logging.warning( f"Could not load dataset as `manifest_filepath` was None. Provided config : {config}" ) return None dataset = audio_to_text_dataset.get_char_dataset( config=config, augmentor=augmentor) return torch.utils.data.DataLoader( dataset=dataset, batch_size=config['batch_size'], collate_fn=dataset.collate_fn, drop_last=config.get('drop_last', False), shuffle=shuffle, num_workers=config.get('num_workers', 0), pin_memory=config.get('pin_memory', False), ) def setup_training_data(self, train_data_config: Optional[Union[DictConfig, Dict]]): """ Sets up the training data loader via a Dict-like object. Args: train_data_config: A config that contains the information regarding construction of an ASR Training dataset. Supported Datasets: - :class:`~nemo.collections.asr.data.audio_to_text.AudioToCharDataset` - :class:`~nemo.collections.asr.data.audio_to_text.AudioToBPEDataset` - :class:`~nemo.collections.asr.data.audio_to_text.TarredAudioToCharDataset` - :class:`~nemo.collections.asr.data.audio_to_text.TarredAudioToBPEDataset` - :class:`~nemo.collections.asr.data.audio_to_text_dali.AudioToCharDALIDataset` """ if 'shuffle' not in train_data_config: train_data_config['shuffle'] = True # preserve config self._update_dataset_config(dataset_name='train', config=train_data_config) self._train_dl = self._setup_dataloader_from_config( config=train_data_config) # Need to set this because if using an IterableDataset, the length of the dataloader is the total number # of samples rather than the number of batches, and this messes up the tqdm progress bar. # So we set the number of steps manually (to the correct number) to fix this. if 'is_tarred' in train_data_config and train_data_config['is_tarred']: # We also need to check if limit_train_batches is already set. # If it's an int, we assume that the user has set it to something sane, i.e. <= # training batches, # and don't change it. Otherwise, adjust batches accordingly if it's a float (including 1.0). if isinstance(self._trainer.limit_train_batches, float): self._trainer.limit_train_batches = int( self._trainer.limit_train_batches * ceil( (len(self._train_dl.dataset) / self.world_size) / train_data_config['batch_size'])) def setup_validation_data(self, val_data_config: Optional[Union[DictConfig, Dict]]): """ Sets up the validation data loader via a Dict-like object. Args: val_data_config: A config that contains the information regarding construction of an ASR Training dataset. Supported Datasets: - :class:`~nemo.collections.asr.data.audio_to_text.AudioToCharDataset` - :class:`~nemo.collections.asr.data.audio_to_text.AudioToBPEDataset` - :class:`~nemo.collections.asr.data.audio_to_text.TarredAudioToCharDataset` - :class:`~nemo.collections.asr.data.audio_to_text.TarredAudioToBPEDataset` - :class:`~nemo.collections.asr.data.audio_to_text_dali.AudioToCharDALIDataset` """ if 'shuffle' not in val_data_config: val_data_config['shuffle'] = False # preserve config self._update_dataset_config(dataset_name='validation', config=val_data_config) self._validation_dl = self._setup_dataloader_from_config( config=val_data_config) def setup_test_data(self, test_data_config: Optional[Union[DictConfig, Dict]]): """ Sets up the test data loader via a Dict-like object. Args: test_data_config: A config that contains the information regarding construction of an ASR Training dataset. Supported Datasets: - :class:`~nemo.collections.asr.data.audio_to_text.AudioToCharDataset` - :class:`~nemo.collections.asr.data.audio_to_text.AudioToBPEDataset` - :class:`~nemo.collections.asr.data.audio_to_text.TarredAudioToCharDataset` - :class:`~nemo.collections.asr.data.audio_to_text.TarredAudioToBPEDataset` - :class:`~nemo.collections.asr.data.audio_to_text_dali.AudioToCharDALIDataset` """ if 'shuffle' not in test_data_config: test_data_config['shuffle'] = False # preserve config self._update_dataset_config(dataset_name='test', config=test_data_config) self._test_dl = self._setup_dataloader_from_config( config=test_data_config) @property def input_types(self) -> Optional[Dict[str, NeuralType]]: if hasattr(self.preprocessor, '_sample_rate'): input_signal_eltype = AudioSignal( freq=self.preprocessor._sample_rate) else: input_signal_eltype = AudioSignal() return { "input_signal": NeuralType(('B', 'T'), input_signal_eltype, optional=True), "input_signal_length": NeuralType(tuple('B'), LengthsType(), optional=True), "processed_signal": NeuralType(('B', 'D', 'T'), SpectrogramType(), optional=True), "processed_signal_length": NeuralType(tuple('B'), LengthsType(), optional=True), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return { "outputs": NeuralType(('B', 'D', 'T'), AcousticEncodedRepresentation()), "encoded_lengths": NeuralType(tuple('B'), LengthsType()), } @typecheck() def forward(self, input_signal=None, input_signal_length=None, processed_signal=None, processed_signal_length=None): """ Forward pass of the model. Note that for RNNT Models, the forward pass of the model is a 3 step process, and this method only performs the first step - forward of the acoustic model. Please refer to the `training_step` in order to see the full `forward` step for training - which performs the forward of the acoustic model, the prediction network and then the joint network. Finally, it computes the loss and possibly compute the detokenized text via the `decoding` step. Please refer to the `validation_step` in order to see the full `forward` step for inference - which performs the forward of the acoustic model, the prediction network and then the joint network. Finally, it computes the decoded tokens via the `decoding` step and possibly compute the batch metrics. Args: input_signal: Tensor that represents a batch of raw audio signals, of shape [B, T]. T here represents timesteps, with 1 second of audio represented as `self.sample_rate` number of floating point values. input_signal_length: Vector of length B, that contains the individual lengths of the audio sequences. processed_signal: Tensor that represents a batch of processed audio signals, of shape (B, D, T) that has undergone processing via some DALI preprocessor. processed_signal_length: Vector of length B, that contains the individual lengths of the processed audio sequences. Returns: A tuple of 2 elements - 1) The log probabilities tensor of shape [B, T, D]. 2) The lengths of the acoustic sequence after propagation through the encoder, of shape [B]. """ has_input_signal = input_signal is not None and input_signal_length is not None has_processed_signal = processed_signal is not None and processed_signal_length is not None if (has_input_signal ^ has_processed_signal) is False: raise ValueError( f"{self} Arguments ``input_signal`` and ``input_signal_length`` are mutually exclusive " " with ``processed_signal`` and ``processed_signal_len`` arguments." ) if not has_processed_signal: processed_signal, processed_signal_length = self.preprocessor( input_signal=input_signal, length=input_signal_length, ) # Spec augment is not applied during evaluation/testing if self.spec_augmentation is not None and self.training: processed_signal = self.spec_augmentation( input_spec=processed_signal, length=processed_signal_length) encoded, encoded_len = self.encoder(audio_signal=processed_signal, length=processed_signal_length) return encoded, encoded_len # PTL-specific methods def training_step(self, batch, batch_nb): signal, signal_len, transcript, transcript_len = batch # forward() only performs encoder forward if isinstance(batch, DALIOutputs) and batch.has_processed_signal: encoded, encoded_len = self.forward( processed_signal=signal, processed_signal_length=signal_len) else: encoded, encoded_len = self.forward(input_signal=signal, input_signal_length=signal_len) del signal # During training, loss must be computed, so decoder forward is necessary decoder, target_length = self.decoder(targets=transcript, target_length=transcript_len) if hasattr(self, '_trainer') and self._trainer is not None: log_every_n_steps = self._trainer.log_every_n_steps sample_id = self._trainer.global_step else: log_every_n_steps = 1 sample_id = batch_nb # If experimental fused Joint-Loss-WER is not used if not self.joint.fuse_loss_wer: # Compute full joint and loss joint = self.joint(encoder_outputs=encoded, decoder_outputs=decoder) loss_value = self.loss(log_probs=joint, targets=transcript, input_lengths=encoded_len, target_lengths=target_length) tensorboard_logs = { 'train_loss': loss_value, 'learning_rate': self._optimizer.param_groups[0]['lr'] } if (sample_id + 1) % log_every_n_steps == 0: self.wer.update(encoded, encoded_len, transcript, transcript_len) _, scores, words = self.wer.compute() self.wer.reset() tensorboard_logs.update( {'training_batch_wer': scores.float() / words}) else: # If experimental fused Joint-Loss-WER is used if (sample_id + 1) % log_every_n_steps == 0: compute_wer = True else: compute_wer = False # Fused joint step loss_value, wer, _, _ = self.joint( encoder_outputs=encoded, decoder_outputs=decoder, encoder_lengths=encoded_len, transcripts=transcript, transcript_lengths=transcript_len, compute_wer=compute_wer, ) tensorboard_logs = { 'train_loss': loss_value, 'learning_rate': self._optimizer.param_groups[0]['lr'] } if compute_wer: tensorboard_logs.update({'training_batch_wer': wer}) # Log items self.log_dict(tensorboard_logs) # Preserve batch acoustic model T and language model U parameters if normalizing if self._optim_normalize_joint_txu: self._optim_normalize_txu = [ encoded_len.max(), transcript_len.max() ] return {'loss': loss_value} def validation_step(self, batch, batch_idx, dataloader_idx=0): signal, signal_len, transcript, transcript_len = batch # forward() only performs encoder forward if isinstance(batch, DALIOutputs) and batch.has_processed_signal: encoded, encoded_len = self.forward( processed_signal=signal, processed_signal_length=signal_len) else: encoded, encoded_len = self.forward(input_signal=signal, input_signal_length=signal_len) del signal tensorboard_logs = {} # If experimental fused Joint-Loss-WER is not used if not self.joint.fuse_loss_wer: if self.compute_eval_loss: decoder, target_length = self.decoder( targets=transcript, target_length=transcript_len) joint = self.joint(encoder_outputs=encoded, decoder_outputs=decoder) loss_value = self.loss(log_probs=joint, targets=transcript, input_lengths=encoded_len, target_lengths=target_length) tensorboard_logs['val_loss'] = loss_value self.wer.update(encoded, encoded_len, transcript, transcript_len) wer, wer_num, wer_denom = self.wer.compute() self.wer.reset() tensorboard_logs['val_wer_num'] = wer_num tensorboard_logs['val_wer_denom'] = wer_denom tensorboard_logs['val_wer'] = wer else: # If experimental fused Joint-Loss-WER is used compute_wer = True if self.compute_eval_loss: decoded, target_len = self.decoder( targets=transcript, target_length=transcript_len) else: decoded = None target_len = transcript_len # Fused joint step loss_value, wer, wer_num, wer_denom = self.joint( encoder_outputs=encoded, decoder_outputs=decoded, encoder_lengths=encoded_len, transcripts=transcript, transcript_lengths=target_len, compute_wer=compute_wer, ) if loss_value is not None: tensorboard_logs['val_loss'] = loss_value tensorboard_logs['val_wer_num'] = wer_num tensorboard_logs['val_wer_denom'] = wer_denom tensorboard_logs['val_wer'] = wer return tensorboard_logs def test_step(self, batch, batch_idx, dataloader_idx=0): logs = self.validation_step(batch, batch_idx, dataloader_idx=dataloader_idx) test_logs = { 'test_wer_num': logs['val_wer_num'], 'test_wer_denom': logs['val_wer_denom'], # 'test_wer': logs['val_wer'], } if 'val_loss' in logs: test_logs['test_loss'] = logs['val_loss'] return test_logs def multi_validation_epoch_end(self, outputs, dataloader_idx: int = 0): if self.compute_eval_loss: val_loss_mean = torch.stack([x['val_loss'] for x in outputs]).mean() val_loss_log = {'val_loss': val_loss_mean} else: val_loss_log = {} wer_num = torch.stack([x['val_wer_num'] for x in outputs]).sum() wer_denom = torch.stack([x['val_wer_denom'] for x in outputs]).sum() tensorboard_logs = { **val_loss_log, 'val_wer': wer_num.float() / wer_denom } return {**val_loss_log, 'log': tensorboard_logs} def multi_test_epoch_end(self, outputs, dataloader_idx: int = 0): if self.compute_eval_loss: test_loss_mean = torch.stack([x['test_loss'] for x in outputs]).mean() test_loss_log = {'test_loss': test_loss_mean} else: test_loss_log = {} wer_num = torch.stack([x['test_wer_num'] for x in outputs]).sum() wer_denom = torch.stack([x['test_wer_denom'] for x in outputs]).sum() tensorboard_logs = { **test_loss_log, 'test_wer': wer_num.float() / wer_denom } return {**test_loss_log, 'log': tensorboard_logs} def _setup_transcribe_dataloader( self, config: Dict) -> 'torch.utils.data.DataLoader': """ Setup function for a temporary data loader which wraps the provided audio file. Args: config: A python dictionary which contains the following keys: paths2audio_files: (a list) of paths to audio files. The files should be relatively short fragments. \ Recommended length per file is between 5 and 25 seconds. batch_size: (int) batch size to use during inference. \ Bigger will result in better throughput performance but would use more memory. temp_dir: (str) A temporary directory where the audio manifest is temporarily stored. Returns: A pytorch DataLoader for the given audio file(s). """ dl_config = { 'manifest_filepath': os.path.join(config['temp_dir'], 'manifest.json'), 'sample_rate': self.preprocessor._sample_rate, 'labels': self.joint.vocabulary, 'batch_size': min(config['batch_size'], len(config['paths2audio_files'])), 'trim_silence': True, 'shuffle': False, } temporary_datalayer = self._setup_dataloader_from_config( config=DictConfig(dl_config)) return temporary_datalayer def on_after_backward(self): super().on_after_backward() if self._optim_variational_noise_std > 0 and self.global_step >= self._optim_variational_noise_start: for param_name, param in self.decoder.named_parameters(): if param.grad is not None: noise = torch.normal( mean=0.0, std=self._optim_variational_noise_std, size=param.size(), device=param.device, dtype=param.dtype, ) param.grad.data.add_(noise) if self._optim_normalize_joint_txu: T, U = self._optim_normalize_txu if T is not None and U is not None: for param_name, param in self.encoder.named_parameters(): if param.grad is not None: param.grad.data.div_(U) for param_name, param in self.decoder.named_parameters(): if param.grad is not None: param.grad.data.div_(T) if self._optim_normalize_encoder_norm: for param_name, param in self.encoder.named_parameters(): if param.grad is not None: norm = param.grad.norm() param.grad.data.div_(norm) if self._optim_normalize_decoder_norm: for param_name, param in self.decoder.named_parameters(): if param.grad is not None: norm = param.grad.norm() param.grad.data.div_(norm) if self._optim_normalize_joint_norm: for param_name, param in self.joint.named_parameters(): if param.grad is not None: norm = param.grad.norm() param.grad.data.div_(norm)
class EncDecRNNTModel(ASRModel): """Base class for encoder decoder RNNT-based models.""" @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] return result def __init__(self, cfg: DictConfig, trainer: Trainer = None): # Required loss function if not WARP_RNNT_AVAILABLE: raise ImportError( "Could not import `warprnnt_pytorch`.\n" "Please visit https://github.com/HawkAaron/warp-transducer " "and follow the steps in the readme to build and install the " "pytorch bindings for RNNT Loss, or use the provided docker " "container that supports RNN-T loss.") # Get global rank and total number of GPU workers for IterableDataset partitioning, if applicable self.global_rank = 0 self.world_size = 1 self.local_rank = 0 if trainer is not None: self.global_rank = (trainer.node_rank * trainer.num_gpus) + trainer.local_rank self.world_size = trainer.num_nodes * trainer.num_gpus self.local_rank = trainer.local_rank super().__init__(cfg=cfg, trainer=trainer) # Initialize components self.preprocessor = EncDecRNNTModel.from_config_dict( self.cfg.preprocessor) self.encoder = EncDecRNNTModel.from_config_dict(self.cfg.encoder) # Update config values required by components dynamically with open_dict(self.cfg.decoder): self.cfg.decoder.vocab_size = len(self.cfg.labels) with open_dict(self.cfg.joint): self.cfg.joint.num_classes = len(self.cfg.labels) self.cfg.joint.vocabulary = self.cfg.labels self.cfg.joint.jointnet.encoder_hidden = self.cfg.model_defaults.enc_hidden self.cfg.joint.jointnet.pred_hidden = self.cfg.model_defaults.pred_hidden self.decoder = EncDecRNNTModel.from_config_dict(self.cfg.decoder) self.joint = EncDecRNNTModel.from_config_dict(self.cfg.joint) self.loss = RNNTLoss(num_classes=self.joint.num_classes_with_blank - 1) if hasattr(self.cfg, 'spec_augment') and self._cfg.spec_augment is not None: self.spec_augmentation = EncDecRNNTModel.from_config_dict( self.cfg.spec_augment) else: self.spec_augmentation = None # Setup decoding objects self.decoding = RNNTDecoding( decoding_cfg=self.cfg.decoding, decoder=self.decoder, joint=self.joint, vocabulary=self.joint.vocabulary, ) # Setup WER calculation self.wer = RNNTWER(decoding=self.decoding, batch_dim_index=0, use_cer=False, log_prediction=True, dist_sync_on_step=True) # Whether to compute loss during evaluation if 'compute_eval_loss' in self.cfg: self.compute_eval_loss = self.cfg.compute_eval_loss else: self.compute_eval_loss = True # Setup fused Joint step if flag is set if self.joint.fuse_loss_wer: self.joint.set_loss(self.loss) self.joint.set_wer(self.wer) @torch.no_grad() def transcribe(self, paths2audio_files: List[str], batch_size: int = 4) -> List[str]: """ Uses greedy decoding to transcribe audio files. Use this method for debugging and prototyping. Args: paths2audio_files: (a list) of paths to audio files. \ Recommended length per file is between 5 and 25 seconds. \ But it is possible to pass a few hours long file if enough GPU memory is available. batch_size: (int) batch size to use during inference. \ Bigger will result in better throughput performance but would use more memory. Returns: A list of transcriptions in the same order as paths2audio_files """ if paths2audio_files is None or len(paths2audio_files) == 0: return {} # We will store transcriptions here hypotheses = [] # Model's mode and device mode = self.training device = next(self.parameters()).device try: # Switch model to evaluation mode self.eval() logging_level = logging.get_verbosity() logging.set_verbosity(logging.WARNING) # Work in tmp directory - will store manifest file there with tempfile.TemporaryDirectory() as tmpdir: with open(os.path.join(tmpdir, 'manifest.json'), 'w') as fp: for audio_file in paths2audio_files: entry = { 'audio_filepath': audio_file, 'duration': 100000, 'text': 'nothing' } fp.write(json.dumps(entry) + '\n') config = { 'paths2audio_files': paths2audio_files, 'batch_size': batch_size, 'temp_dir': tmpdir } temporary_datalayer = self._setup_transcribe_dataloader(config) for test_batch in temporary_datalayer: encoded, encoded_len = self.forward( input_signal=test_batch[0].to(device), input_signal_length=test_batch[1].to(device)) hypotheses += self.decoding.rnnt_decoder_predictions_tensor( encoded, encoded_len) del test_batch finally: # set mode back to its original value self.train(mode=mode) logging.set_verbosity(logging_level) return hypotheses def change_vocabulary(self, new_vocabulary: List[str], decoding_cfg: Optional[DictConfig] = None): """ Changes vocabulary used during RNNT decoding process. Use this method when fine-tuning a pre-trained model. This method changes only decoder and leaves encoder and pre-processing modules unchanged. For example, you would use it if you want to use pretrained encoder when fine-tuning on data in another language, or when you'd need model to learn capitalization, punctuation and/or special characters. Args: new_vocabulary: list with new vocabulary. Must contain at least 2 elements. Typically, \ this is target alphabet. decoding_cfg: A config for the decoder, which is optional. If the decoding type needs to be changed (from say Greedy to Beam decoding etc), the config can be passed here. Returns: None """ if self.joint.vocabulary == new_vocabulary: logging.warning( f"Old {self.joint.vocabulary} and new {new_vocabulary} match. Not changing anything." ) else: if new_vocabulary is None or len(new_vocabulary) == 0: raise ValueError( f'New vocabulary must be non-empty list of chars. But I got: {new_vocabulary}' ) joint_config = self.joint.to_config_dict() new_joint_config = copy.deepcopy(joint_config) new_joint_config['vocabulary'] = new_vocabulary new_joint_config['num_classes'] = len(new_vocabulary) del self.joint self.joint = EncDecRNNTModel.from_config_dict(new_joint_config) decoder_config = self.decoder.to_config_dict() new_decoder_config = copy.deepcopy(decoder_config) new_decoder_config.vocab_size = len(new_vocabulary) del self.decoder self.decoder = EncDecRNNTModel.from_config_dict(new_decoder_config) del self.loss self.loss = RNNTLoss( num_classes=self.joint.num_classes_with_blank - 1) if decoding_cfg is None: # Assume same decoding config as before decoding_cfg = self.cfg.decoding self.decoding = RNNTDecoding( decoding_cfg=decoding_cfg, decoder=self.decoder, joint=self.joint, vocabulary=self.joint.vocabulary, ) self.wer = RNNTWER( decoding=self.decoding, batch_dim_index=self.wer.batch_dim_index, use_cer=self.wer.use_cer, log_prediction=self.wer.log_prediction, dist_sync_on_step=True, ) # Setup fused Joint step if self.joint.fuse_loss_wer: self.joint.set_loss(self.loss) self.joint.set_wer(self.wer) # Update config with open_dict(self.cfg.joint): self.cfg.joint = new_joint_config with open_dict(self.cfg.decoder): self.cfg.decoder = new_decoder_config with open_dict(self.cfg.decoding): self.cfg.decoding = decoding_cfg logging.info( f"Changed decoder to output to {self.joint.vocabulary} vocabulary." ) def _setup_dataloader_from_config(self, config: Optional[Dict]): if 'augmentor' in config: augmentor = process_augmentations(config['augmentor']) else: augmentor = None shuffle = config['shuffle'] device = 'gpu' if torch.cuda.is_available() else 'cpu' if config.get('use_dali', False): device_id = self.local_rank if device == 'gpu' else None dataset = audio_to_text_dataset.get_dali_char_dataset( config=config, shuffle=shuffle, device_id=device_id, global_rank=self.global_rank, world_size=self.world_size, preprocessor_cfg=self._cfg.preprocessor, ) return dataset # Instantiate tarred dataset loader or normal dataset loader if config.get('is_tarred', False): if ('tarred_audio_filepaths' in config and config['tarred_audio_filepaths'] is None) or ( 'manifest_filepath' in config and config['manifest_filepath'] is None): logging.warning( "Could not load dataset as `manifest_filepath` was None or " f"`tarred_audio_filepaths` is None. Provided config : {config}" ) return None shuffle_n = config.get('shuffle_n', 4 * config['batch_size']) if shuffle else 0 dataset = audio_to_text_dataset.get_tarred_char_dataset( config=config, shuffle_n=shuffle_n, global_rank=self.global_rank, world_size=self.world_size, augmentor=augmentor, ) shuffle = False else: if 'manifest_filepath' in config and config[ 'manifest_filepath'] is None: logging.warning( f"Could not load dataset as `manifest_filepath` was None. Provided config : {config}" ) return None dataset = audio_to_text_dataset.get_char_dataset( config=config, augmentor=augmentor) return torch.utils.data.DataLoader( dataset=dataset, batch_size=config['batch_size'], collate_fn=dataset.collate_fn, drop_last=config.get('drop_last', False), shuffle=shuffle, num_workers=config.get('num_workers', 0), pin_memory=config.get('pin_memory', False), ) def setup_training_data(self, train_data_config: Optional[Union[DictConfig, Dict]]): if 'shuffle' not in train_data_config: train_data_config['shuffle'] = True # preserve config self._update_dataset_config(dataset_name='train', config=train_data_config) self._train_dl = self._setup_dataloader_from_config( config=train_data_config) # Need to set this because if using an IterableDataset, the length of the dataloader is the total number # of samples rather than the number of batches, and this messes up the tqdm progress bar. # So we set the number of steps manually (to the correct number) to fix this. if 'is_tarred' in train_data_config and train_data_config['is_tarred']: # We also need to check if limit_train_batches is already set. # If it's an int, we assume that the user has set it to something sane, i.e. <= # training batches, # and don't change it. Otherwise, adjust batches accordingly if it's a float (including 1.0). if isinstance(self._trainer.limit_train_batches, float): self._trainer.limit_train_batches = int( self._trainer.limit_train_batches * ceil( (len(self._train_dl.dataset) / self.world_size) / train_data_config['batch_size'])) def setup_validation_data(self, val_data_config: Optional[Union[DictConfig, Dict]]): if 'shuffle' not in val_data_config: val_data_config['shuffle'] = False # preserve config self._update_dataset_config(dataset_name='validation', config=val_data_config) self._validation_dl = self._setup_dataloader_from_config( config=val_data_config) def setup_test_data(self, test_data_config: Optional[Union[DictConfig, Dict]]): if 'shuffle' not in test_data_config: test_data_config['shuffle'] = False # preserve config self._update_dataset_config(dataset_name='test', config=test_data_config) self._test_dl = self._setup_dataloader_from_config( config=test_data_config) @property def input_types(self) -> Optional[Dict[str, NeuralType]]: if hasattr(self.preprocessor, '_sample_rate'): input_signal_eltype = AudioSignal( freq=self.preprocessor._sample_rate) else: input_signal_eltype = AudioSignal() return { "input_signal": NeuralType(('B', 'T'), input_signal_eltype, optional=True), "input_signal_length": NeuralType(tuple('B'), LengthsType(), optional=True), "processed_signal": NeuralType(('B', 'D', 'T'), SpectrogramType(), optional=True), "processed_signal_length": NeuralType(tuple('B'), LengthsType(), optional=True), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return { "outputs": NeuralType(('B', 'D', 'T'), AcousticEncodedRepresentation()), "encoded_lengths": NeuralType(tuple('B'), LengthsType()), } @typecheck() def forward(self, input_signal=None, input_signal_length=None, processed_signal=None, processed_signal_length=None): has_input_signal = input_signal is not None and input_signal_length is not None has_processed_signal = processed_signal is not None and processed_signal_length is not None if (has_input_signal ^ has_processed_signal) is False: raise ValueError( f"{self} Arguments ``input_signal`` and ``input_signal_length`` are mutually exclusive " " with ``processed_signal`` and ``processed_signal_len`` arguments." ) if not has_processed_signal: processed_signal, processed_signal_length = self.preprocessor( input_signal=input_signal, length=input_signal_length, ) # Spec augment is not applied during evaluation/testing if self.spec_augmentation is not None and self.training: processed_signal = self.spec_augmentation( input_spec=processed_signal) encoded, encoded_len = self.encoder(audio_signal=processed_signal, length=processed_signal_length) return encoded, encoded_len # PTL-specific methods def training_step(self, batch, batch_nb): signal, signal_len, transcript, transcript_len = batch # forward() only performs encoder forward if isinstance(batch, DALIOutputs) and batch.has_processed_signal: encoded, encoded_len = self.forward( processed_signal=signal, processed_signal_length=signal_len) else: encoded, encoded_len = self.forward(input_signal=signal, input_signal_length=signal_len) del signal # During training, loss must be computed, so decoder forward is necessary decoder, target_length = self.decoder(targets=transcript, target_length=transcript_len) if hasattr(self, '_trainer') and self._trainer is not None: log_every_n_steps = self._trainer.log_every_n_steps sample_id = self._trainer.global_step else: log_every_n_steps = 1 sample_id = batch_nb # If experimental fused Joint-Loss-WER is not used if not self.joint.fuse_loss_wer: # Compute full joint and loss joint = self.joint(encoder_outputs=encoded, decoder_outputs=decoder) loss_value = self.loss(log_probs=joint, targets=transcript, input_lengths=encoded_len, target_lengths=target_length) tensorboard_logs = { 'train_loss': loss_value, 'learning_rate': self._optimizer.param_groups[0]['lr'] } if (sample_id + 1) % log_every_n_steps == 0: self.wer.update(encoded, encoded_len, transcript, transcript_len) _, scores, words = self.wer.compute() tensorboard_logs.update( {'training_batch_wer': scores.float() / words}) else: # If experimental fused Joint-Loss-WER is used if (sample_id + 1) % log_every_n_steps == 0: compute_wer = True else: compute_wer = False # Fused joint step loss_value, wer, _, _ = self.joint( encoder_outputs=encoded, decoder_outputs=decoder, encoder_lengths=encoded_len, transcripts=transcript, transcript_lengths=transcript_len, compute_wer=compute_wer, ) tensorboard_logs = { 'train_loss': loss_value, 'learning_rate': self._optimizer.param_groups[0]['lr'] } if compute_wer: tensorboard_logs.update({'training_batch_wer': wer}) # Log items self.log_dict(tensorboard_logs) return {'loss': loss_value} def validation_step(self, batch, batch_idx, dataloader_idx=0): signal, signal_len, transcript, transcript_len = batch # forward() only performs encoder forward if isinstance(batch, DALIOutputs) and batch.has_processed_signal: encoded, encoded_len = self.forward( processed_signal=signal, processed_signal_length=signal_len) else: encoded, encoded_len = self.forward(input_signal=signal, input_signal_length=signal_len) del signal tensorboard_logs = {} # If experimental fused Joint-Loss-WER is not used if not self.joint.fuse_loss_wer: if self.compute_eval_loss: decoder, target_length = self.decoder( targets=transcript, target_length=transcript_len) joint = self.joint(encoder_outputs=encoded, decoder_outputs=decoder) loss_value = self.loss(log_probs=joint, targets=transcript, input_lengths=encoded_len, target_lengths=target_length) tensorboard_logs['val_loss'] = loss_value self.wer.update(encoded, encoded_len, transcript, transcript_len) wer, wer_num, wer_denom = self.wer.compute() tensorboard_logs['val_wer_num'] = wer_num tensorboard_logs['val_wer_denom'] = wer_denom tensorboard_logs['val_wer'] = wer else: # If experimental fused Joint-Loss-WER is used compute_wer = True if self.compute_eval_loss: decoded, target_len = self.decoder( targets=transcript, target_length=transcript_len) else: decoded = None target_len = transcript_len # Fused joint step loss_value, wer, wer_num, wer_denom = self.joint( encoder_outputs=encoded, decoder_outputs=decoded, encoder_lengths=encoded_len, transcripts=transcript, transcript_lengths=target_len, compute_wer=compute_wer, ) if loss_value is not None: tensorboard_logs['val_loss'] = loss_value tensorboard_logs['val_wer_num'] = wer_num tensorboard_logs['val_wer_denom'] = wer_denom tensorboard_logs['val_wer'] = wer return tensorboard_logs def test_step(self, batch, batch_idx, dataloader_idx=0): logs = self.validation_step(batch, batch_idx, dataloader_idx=dataloader_idx) test_logs = { 'test_wer_num': logs['val_wer_num'], 'test_wer_denom': logs['val_wer_denom'], # 'test_wer': logs['val_wer'], } if 'val_loss' in logs: test_logs['test_loss'] = logs['val_loss'] return test_logs def multi_validation_epoch_end(self, outputs, dataloader_idx: int = 0): if self.compute_eval_loss: val_loss_mean = torch.stack([x['val_loss'] for x in outputs]).mean() val_loss_log = {'val_loss': val_loss_mean} else: val_loss_log = {} wer_num = torch.stack([x['val_wer_num'] for x in outputs]).sum() wer_denom = torch.stack([x['val_wer_denom'] for x in outputs]).sum() tensorboard_logs = { **val_loss_log, 'val_wer': wer_num.float() / wer_denom } return {**val_loss_log, 'log': tensorboard_logs} def multi_test_epoch_end(self, outputs, dataloader_idx: int = 0): if self.compute_eval_loss: test_loss_mean = torch.stack([x['test_loss'] for x in outputs]).mean() test_loss_log = {'test_loss': test_loss_mean} else: test_loss_log = {} wer_num = torch.stack([x['test_wer_num'] for x in outputs]).sum() wer_denom = torch.stack([x['test_wer_denom'] for x in outputs]).sum() tensorboard_logs = { **test_loss_log, 'test_wer': wer_num.float() / wer_denom } return {**test_loss_log, 'log': tensorboard_logs} def _setup_transcribe_dataloader( self, config: Dict) -> 'torch.utils.data.DataLoader': """ Setup function for a temporary data loader which wraps the provided audio file. Args: config: A python dictionary which contains the following keys: paths2audio_files: (a list) of paths to audio files. The files should be relatively short fragments. \ Recommended length per file is between 5 and 25 seconds. batch_size: (int) batch size to use during inference. \ Bigger will result in better throughput performance but would use more memory. temp_dir: (str) A temporary directory where the audio manifest is temporarily stored. Returns: A pytorch DataLoader for the given audio file(s). """ dl_config = { 'manifest_filepath': os.path.join(config['temp_dir'], 'manifest.json'), 'sample_rate': self.preprocessor._sample_rate, 'labels': self.joint.vocabulary, 'batch_size': min(config['batch_size'], len(config['paths2audio_files'])), 'trim_silence': True, 'shuffle': False, } temporary_datalayer = self._setup_dataloader_from_config( config=DictConfig(dl_config)) return temporary_datalayer