def main(cfg): trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) asr_model = EncDecRNNTModel(cfg=cfg.model, trainer=trainer) trainer.fit(asr_model) if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None: gpu = 1 if cfg.trainer.gpus != 0 else 0 trainer = pl.Trainer(gpus=gpu, precision=cfg.trainer.precision) if asr_model.prepare_test(trainer): trainer.test(asr_model)
def main(cfg): logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) asr_model = EncDecRNNTModel(cfg=cfg.model, trainer=trainer) # Initialize the weights of the model from another model, if provided via config asr_model.maybe_init_from_pretrained_checkpoint(cfg) trainer.fit(asr_model) if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None: if asr_model.prepare_test(trainer): trainer.test(asr_model)
def main(cfg): logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) asr_model = EncDecRNNTModel(cfg=cfg.model, trainer=trainer) # Initialize the weights of the model from another model, if provided via config asr_model.maybe_init_from_pretrained_checkpoint(cfg) trainer.fit(asr_model) if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None: gpu = 1 if cfg.trainer.gpus != 0 else 0 test_trainer = pl.Trainer( gpus=gpu, precision=trainer.precision, amp_level=trainer.accelerator_connector.amp_level, amp_backend=cfg.trainer.get("amp_backend", "native"), ) if asr_model.prepare_test(test_trainer): test_trainer.test(asr_model)