예제 #1
0
def slice_signal(model, signal, sl):
    assert signal.ndim == 1
    if isinstance(sl, slice) and (sl.step is None or sl.step == 1):
        return signal[sl]
    else:
        size = np.arange(signal.size)[sl].size
        sliced_signal = Signal(np.zeros(size), name="%s.sliced" % signal.name)
        model.add_op(SlicedCopy(signal, sliced_signal, a_slice=sl))
        return sliced_signal
예제 #2
0
def build_connection(model, conn):
    # Create random number generator
    rng = np.random.RandomState(model.seeds[conn])

    # Get input and output connections from pre and post
    def get_prepost_signal(is_pre):
        target = conn.pre_obj if is_pre else conn.post_obj
        key = 'out' if is_pre else 'in'

        if target not in model.sig:
            raise ValueError("Building %s: the '%s' object %s "
                             "is not in the model, or has a size of zero." %
                             (conn, 'pre' if is_pre else 'post', target))
        if key not in model.sig[target]:
            raise ValueError("Error building %s: the '%s' object %s "
                             "has a '%s' size of zero." %
                             (conn, 'pre' if is_pre else 'post', target, key))

        return model.sig[target][key]

    model.sig[conn]['in'] = get_prepost_signal(is_pre=True)
    model.sig[conn]['out'] = get_prepost_signal(is_pre=False)

    weights = None
    eval_points = None
    solver_info = None
    signal_size = conn.size_out
    post_slice = conn.post_slice

    # Figure out the signal going across this connection
    in_signal = model.sig[conn]['in']
    if (isinstance(conn.pre_obj, Node)
            or (isinstance(conn.pre_obj, Ensemble)
                and isinstance(conn.pre_obj.neuron_type, Direct))):
        # Node or Decoded connection in directmode
        sliced_in = slice_signal(model, in_signal, conn.pre_slice)

        if conn.function is not None:
            in_signal = Signal(np.zeros(conn.size_mid), name='%s.func' % conn)
            model.add_op(
                SimPyFunc(output=in_signal,
                          fn=conn.function,
                          t_in=False,
                          x=sliced_in))
        else:
            in_signal = sliced_in

    elif isinstance(conn.pre_obj, Ensemble):  # Normal decoded connection
        eval_points, decoders, solver_info = build_decoders(model, conn, rng)

        if conn.solver.weights:
            model.sig[conn]['out'] = model.sig[conn.post_obj.neurons]['in']
            signal_size = conn.post_obj.neurons.size_in
            post_slice = Ellipsis  # don't apply slice later
            weights = decoders.T
        else:
            weights = multiply(conn.transform, decoders.T)
    else:
        in_signal = slice_signal(model, in_signal, conn.pre_slice)

    # Add operator for applying weights
    if weights is None:
        weights = np.array(conn.transform)

    if isinstance(conn.post_obj, Neurons):
        gain = model.params[conn.post_obj.ensemble].gain[post_slice]
        weights = multiply(gain, weights)

    if conn.learning_rule is not None and weights.ndim < 2:
        raise ValueError("Learning connection must have full transform matrix")

    model.sig[conn]['weights'] = Signal(weights,
                                        name="%s.weights" % conn,
                                        readonly=True)
    signal = Signal(np.zeros(signal_size), name="%s.weighted" % conn)
    model.add_op(Reset(signal))
    op = ElementwiseInc if weights.ndim < 2 else DotInc
    model.add_op(
        op(model.sig[conn]['weights'],
           in_signal,
           signal,
           tag="%s.weights_elementwiseinc" % conn))

    # Add operator for filtering
    if conn.synapse is not None:
        signal = model.build(conn.synapse, signal)

    # Copy to the proper slice
    model.add_op(
        SlicedCopy(signal,
                   model.sig[conn]['out'],
                   b_slice=post_slice,
                   inc=True,
                   tag="%s.gain" % conn))

    # Build learning rules
    if conn.learning_rule is not None:
        model.sig[conn]['weights'].readonly = False
        model.add_op(PreserveValue(model.sig[conn]['weights']))

        rule = conn.learning_rule
        if is_iterable(rule):
            for r in itervalues(rule) if isinstance(rule, dict) else rule:
                model.build(r)
        elif rule is not None:
            model.build(rule)

    model.params[conn] = BuiltConnection(eval_points=eval_points,
                                         solver_info=solver_info,
                                         weights=weights)
예제 #3
0
def build_connection(model, conn):
    """Builds a `.Connection` object into a model.

    A brief summary of what happens in the connection build process,
    in order:

    1. Solve for decoders.
    2. Combine transform matrix with decoders to get weights.
    3. Add operators for computing the function
       or multiplying neural activity by weights.
    4. Call build function for the synapse.
    5. Call build function for the learning rule.
    6. Add operator for applying learning rule delta to weights.

    Some of these steps may be altered or omitted depending on the parameters
    of the connection, in particular the pre and post types.

    Parameters
    ----------
    model : Model
        The model to build into.
    conn : Connection
        The connection to build.

    Notes
    -----
    Sets ``model.params[conn]`` to a `.BuiltConnection` instance.
    """

    # Create random number generator
    rng = np.random.RandomState(model.seeds[conn])

    # Get input and output connections from pre and post
    def get_prepost_signal(is_pre):
        target = conn.pre_obj if is_pre else conn.post_obj
        key = 'out' if is_pre else 'in'

        if target not in model.sig:
            raise BuildError("Building %s: the %r object %s is not in the "
                             "model, or has a size of zero." %
                             (conn, 'pre' if is_pre else 'post', target))
        if key not in model.sig[target]:
            raise BuildError(
                "Building %s: the %r object %s has a %r size of zero." %
                (conn, 'pre' if is_pre else 'post', target, key))

        return model.sig[target][key]

    model.sig[conn]['in'] = get_prepost_signal(is_pre=True)
    model.sig[conn]['out'] = get_prepost_signal(is_pre=False)

    weights = None
    eval_points = None
    solver_info = None
    signal_size = conn.size_out
    post_slice = conn.post_slice

    # Sample transform if given a distribution
    transform = (conn.transform.sample(
        conn.size_out, conn.size_mid, rng=rng) if isinstance(
            conn.transform, Distribution) else np.array(conn.transform))

    # Figure out the signal going across this connection
    in_signal = model.sig[conn]['in']
    if (isinstance(conn.pre_obj, Node)
            or (isinstance(conn.pre_obj, Ensemble)
                and isinstance(conn.pre_obj.neuron_type, Direct))):
        # Node or Decoded connection in directmode
        weights = transform
        sliced_in = slice_signal(model, in_signal, conn.pre_slice)
        if conn.function is not None:
            in_signal = Signal(np.zeros(conn.size_mid), name='%s.func' % conn)
            model.add_op(SimPyFunc(in_signal, conn.function, None, sliced_in))
        else:
            in_signal = sliced_in
    elif isinstance(conn.pre_obj, Ensemble):  # Normal decoded connection
        eval_points, weights, solver_info = build_decoders(
            model, conn, rng, transform)
        if conn.solver.weights:
            model.sig[conn]['out'] = model.sig[conn.post_obj.neurons]['in']
            signal_size = conn.post_obj.neurons.size_in
            post_slice = Ellipsis  # don't apply slice later
    else:
        weights = transform
        in_signal = slice_signal(model, in_signal, conn.pre_slice)

    if isinstance(conn.post_obj, Neurons):
        weights = multiply(
            model.params[conn.post_obj.ensemble].gain[post_slice], weights)

    # Add operator for applying weights
    model.sig[conn]['weights'] = Signal(weights,
                                        name="%s.weights" % conn,
                                        readonly=True)
    signal = Signal(np.zeros(signal_size), name="%s.weighted" % conn)
    model.add_op(Reset(signal))
    op = ElementwiseInc if weights.ndim < 2 else DotInc
    model.add_op(
        op(model.sig[conn]['weights'],
           in_signal,
           signal,
           tag="%s.weights_elementwiseinc" % conn))

    # Add operator for filtering
    if conn.synapse is not None:
        signal = model.build(conn.synapse, signal)

    # Store the weighted-filtered output in case we want to probe it
    model.sig[conn]['weighted'] = signal

    # Copy to the proper slice
    model.add_op(
        SlicedCopy(signal,
                   model.sig[conn]['out'],
                   dst_slice=post_slice,
                   inc=True,
                   tag="%s.gain" % conn))

    # Build learning rules
    if conn.learning_rule is not None:
        rule = conn.learning_rule
        rule = [rule] if not is_iterable(rule) else rule
        targets = []
        for r in itervalues(rule) if isinstance(rule, dict) else rule:
            model.build(r)
            targets.append(r.modifies)

        if 'encoders' in targets:
            encoder_sig = model.sig[conn.post_obj]['encoders']
            if not any(
                    isinstance(op, PreserveValue) and op.dst is encoder_sig
                    for op in model.operators):
                encoder_sig.readonly = False
                model.add_op(PreserveValue(encoder_sig))
        if 'decoders' in targets or 'weights' in targets:
            if weights.ndim < 2:
                raise BuildError(
                    "'transform' must be a 2-dimensional array for learning")
            model.sig[conn]['weights'].readonly = False
            model.add_op(PreserveValue(model.sig[conn]['weights']))

    model.params[conn] = BuiltConnection(eval_points=eval_points,
                                         solver_info=solver_info,
                                         transform=transform,
                                         weights=weights)