예제 #1
0
def create_model(seed=None):

    global model

    #create vocabulary to show representations in gui
    if nengo_gui_on:
        vocab_angles = spa.Vocabulary(D)
        for name in [0, 3, 7, 12, 18, 25, 33, 42]:
            #vocab_angles.add('D' + str(name), np.linalg.norm(compressed_im_cued[name+90])) #take mean across phases
            v = compressed_im_cued[name + 90]
            nrm = np.linalg.norm(v)
            if nrm > 0:
                v /= nrm
            vocab_angles.add('D' + str(name), v)  #take mean across phases

        v = np.dot(imagearr[-1, :] / 50, U_cued[:, :D])
        nrm = np.linalg.norm(v)
        if nrm > 0:
            v /= nrm
        vocab_angles.add('Impulse', v)

    #model = nengo.Network(seed=seed)
    model = spa.SPA(seed=seed)
    with model:

        #input nodes
        inputNode_cued = nengo.Node(input_func_cued, label='input_cued')
        reactivate = nengo.Node(reactivate_func, label='reactivate')

        #sensory ensemble
        sensory_cued = nengo.Ensemble(Ns,
                                      D,
                                      encoders=e_cued,
                                      intercepts=Uniform(0.01, .1),
                                      radius=1,
                                      label='sensory_cued')
        nengo.Connection(inputNode_cued,
                         sensory_cued,
                         transform=U_cued[:, :D].T)

        #memory ensemble
        memory_cued = nengo.Ensemble(Nm,
                                     D,
                                     neuron_type=stpLIF(),
                                     intercepts=Uniform(0.01, .1),
                                     radius=1,
                                     label='memory_cued')
        nengo.Connection(reactivate,
                         memory_cued.neurons)  #potential reactivation
        nengo.Connection(sensory_cued, memory_cued, transform=.1)  #.1)

        #recurrent STSP connection
        nengo.Connection(memory_cued,
                         memory_cued,
                         transform=1,
                         learning_rule_type=STP(),
                         solver=nengo.solvers.LstsqL2(weights=True))

        #comparison represents sin, cosine of theta of both sensory and memory ensemble
        comparison_cued = nengo.Ensemble(Nc,
                                         dimensions=4,
                                         radius=math.sqrt(2),
                                         intercepts=Uniform(.01, 1),
                                         label='comparison_cued')
        nengo.Connection(sensory_cued,
                         comparison_cued[:2],
                         eval_points=compressed_im_cued[0:-1],
                         function=sincos.T)
        nengo.Connection(memory_cued,
                         comparison_cued[2:],
                         eval_points=compressed_im_cued[0:-1],
                         function=sincos.T)

        #decision represents the difference in theta decoded from the sensory and memory ensembles
        decision_cued = nengo.Ensemble(n_neurons=Nd,
                                       dimensions=1,
                                       radius=45,
                                       label='decision_cued')
        nengo.Connection(comparison_cued,
                         decision_cued,
                         eval_points=ep,
                         scale_eval_points=False,
                         function=arctan_func)

        #same for uncued
        if uncued:
            inputNode_uncued = nengo.Node(input_func_uncued,
                                          label='input_uncued')

            sensory_uncued = nengo.Ensemble(Ns,
                                            D,
                                            encoders=e_uncued,
                                            intercepts=Uniform(0.01, .1),
                                            radius=1,
                                            label='sensory_uncued')
            nengo.Connection(inputNode_uncued,
                             sensory_uncued,
                             transform=U_uncued[:, :D].T)

            memory_uncued = nengo.Ensemble(Nm,
                                           D,
                                           neuron_type=stpLIF(),
                                           intercepts=Uniform(0.01, .1),
                                           radius=1,
                                           label='memory_uncued')
            nengo.Connection(sensory_uncued, memory_uncued, transform=.1)

            nengo.Connection(memory_uncued,
                             memory_uncued,
                             transform=1,
                             learning_rule_type=STP(),
                             solver=nengo.solvers.LstsqL2(weights=True))

            comparison_uncued = nengo.Ensemble(Nd,
                                               dimensions=4,
                                               radius=math.sqrt(2),
                                               intercepts=Uniform(.01, 1),
                                               label='comparison_uncued')

            nengo.Connection(memory_uncued,
                             comparison_uncued[2:],
                             eval_points=compressed_im_uncued[0:-1],
                             function=sincos.T)
            nengo.Connection(sensory_uncued,
                             comparison_uncued[:2],
                             eval_points=compressed_im_uncued[0:-1],
                             function=sincos.T)

            decision_uncued = nengo.Ensemble(n_neurons=Nd,
                                             dimensions=1,
                                             radius=45,
                                             label='decision_uncued')
            nengo.Connection(comparison_uncued,
                             decision_uncued,
                             eval_points=ep,
                             scale_eval_points=False,
                             function=arctan_func)

        #decode for gui
        if nengo_gui_on:
            model.sensory_decode = spa.State(D,
                                             vocab=vocab_angles,
                                             subdimensions=12,
                                             label='sensory_decode')
            for ens in model.sensory_decode.all_ensembles:
                ens.neuron_type = nengo.Direct()
            nengo.Connection(sensory_cued,
                             model.sensory_decode.input,
                             synapse=None)

            model.memory_decode = spa.State(D,
                                            vocab=vocab_angles,
                                            subdimensions=12,
                                            label='memory_decode')
            for ens in model.memory_decode.all_ensembles:
                ens.neuron_type = nengo.Direct()
            nengo.Connection(memory_cued,
                             model.memory_decode.input,
                             synapse=None)

        #probes
        if not (nengo_gui_on):
            if store_representations:  #sim 1 trials 1-100
                #p_dtheta_cued=nengo.Probe(decision_cued, synapse=0.01)
                model.p_mem_cued = nengo.Probe(memory_cued, synapse=0.01)
                #p_sen_cued=nengo.Probe(sensory_cued, synapse=0.01)

                if uncued:
                    model.p_mem_uncued = nengo.Probe(memory_uncued,
                                                     synapse=0.01)

            if store_spikes_and_resources:  #sim 1 trial 1
                model.p_spikes_mem_cued = nengo.Probe(memory_cued.neurons,
                                                      'spikes')
                model.p_res_cued = nengo.Probe(memory_cued.neurons,
                                               'resources')
                model.p_cal_cued = nengo.Probe(memory_cued.neurons, 'calcium')

                if uncued:
                    model.p_spikes_mem_uncued = nengo.Probe(
                        memory_uncued.neurons, 'spikes')
                    model.p_res_uncued = nengo.Probe(memory_uncued.neurons,
                                                     'resources')
                    model.p_cal_uncued = nengo.Probe(memory_uncued.neurons,
                                                     'calcium')

            if store_decisions:  #sim 2
                model.p_dec_cued = nengo.Probe(decision_cued, synapse=0.01)
#Setup the environment
import matplotlib.pyplot as plt
import random
import math
import nengo
from nengo import spa

# Number of dimensions for the SPs
dimensions = 64

# Make a model object with the SPA network
model = spa.SPA(label='Task')

with model:
    # Initial the three visual perceptual memory component and one working memory component.
    model.vision1 = spa.State(dimensions=dimensions,
                              neurons_per_dimension=100,
                              feedback=0.7)
    model.vision2 = spa.State(dimensions=dimensions,
                              neurons_per_dimension=100,
                              feedback=0.7)
    model.cue = spa.Buffer(dimensions=dimensions, neurons_per_dimension=100)
    model.representation = spa.Memory(dimensions=dimensions,
                                      neurons_per_dimension=100)

    # Specify the action mapping and attention function
    actions = spa.Actions(
        'dot(cue, LEFT) --> vision1=vision1*2',
        'dot(cue, RIGHT) --> vision2=vision2*2',
    )
    cortical_actions = spa.Actions('representation=vision1+vision2', )
예제 #3
0
    def model(self, p):
        vocab = spa.Vocabulary(p.D)
        items = []
        fan = []
        assert p.M % 6 == 0

        for i in range(p.M / 6):
            for j in range(3):
                pp = vocab.parse('X%d+Y%d+%g*Q' %
                                 (6 * i + j, 6 * i + j, p.common))
                pp.normalize()
                vocab.add('P%d' % (3 * i + j), pp)
                items.append(pp.v)
                fan.append(1)

            for j, v in enumerate(['AB', 'CB', 'AC']):
                pp = vocab.parse('%s%d+%s%d+%g*Q' %
                                 (v[0], i, v[1], i, p.common))
                pp.normalize()
                vocab.add('P%d_2' % (3 * i + j), pp)
                items.append(pp.v)
                fan.append(2)

        rng = np.random.RandomState(seed=p.seed)
        order = np.arange(len(items))
        rng.shuffle(order)
        items = [items[o] for o in order]
        fan = [fan[o] for o in order]
        self.fan = fan

        model = spa.SPA()
        with model:

            model.cue = spa.State(p.D, vocab=vocab)
            if p.noise > 0:
                for ens in model.cue.all_ensembles:
                    ens.noise = nengo.processes.WhiteNoise(
                        dist=nengo.dists.Gaussian(0, std=p.noise))

            model.mem = nengo.networks.EnsembleArray(n_neurons=50,
                                                     n_ensembles=len(items))
            for ens in model.mem.all_ensembles:
                ens.encoders = nengo.dists.Choice([[1]])
                ens.intercepts = nengo.dists.Uniform(0, 1)
            nengo.Connection(model.mem.output,
                             model.mem.input,
                             transform=np.eye(len(items)) - 1,
                             synapse=p.syn)

            nengo.Connection(model.cue.output,
                             model.mem.input,
                             transform=np.array(items),
                             synapse=p.input_syn)

            mem_activity = nengo.Node(None, size_in=1)
            for ens in model.mem.all_ensembles:
                nengo.Connection(ens.neurons,
                                 mem_activity,
                                 transform=np.ones((1, ens.n_neurons)),
                                 synapse=None)
            self.p_activity = nengo.Probe(mem_activity, synapse=0.01)

        class Env(nengo.Node):
            def __init__(self, items):
                self.items = items
                self.index = 0
                self.switch_time = 0
                self.times = []
                self.correct = []
                super(Env, self).__init__(self.func,
                                          size_in=len(items),
                                          size_out=p.D)

            def func(self, t, x):
                if t > self.switch_time + p.min_time + p.t_zero:
                    values = list(sorted(x))
                    if values[-2] < 1e-3 or t > (self.switch_time + p.timeout):
                        self.correct.append(np.argmax(x) == self.index)
                        self.index = (self.index + 1) % len(self.items)
                        self.times.append(t - self.switch_time)
                        self.switch_time = t

                if len(self.times) >= len(self.items) and not p.gui:
                    raise FinishedException()

                if t < self.switch_time + p.t_zero:
                    return np.zeros(p.D)
                else:
                    return self.items[self.index]

        with model:
            self.env = Env(items)
            nengo.Connection(self.env, model.cue.input, synapse=None)
            nengo.Connection(model.mem.output, self.env, synapse=0.005)

        return model
def generate(input_signal, alpha=1000.0):
    beta = alpha / 4.0

    # Read in the class mean for numbers from vision network
    weights_data = np.load('models/mnist_vision_data/params.npz')
    weights = weights_data['Wc']
    means_data = np.load('models/mnist_vision_data/class_means.npz')
    means = np.matrix(1.0 / means_data['means'])
    sps = np.multiply(weights.T, means.T)[:10]
    sps_labels = [
        'ZERO', 'ONE', 'TWO', 'THREE', 'FOUR',
        'FIVE', 'SIX', 'SEVEN', 'EIGHT', 'NINE']
    dimensions = weights.shape[0]

    # generate the Function Space
    forces, _, _ = forcing_functions.load_folder(
        'models/handwriting_trajectories', rhythmic=True,
        alpha=alpha, beta=beta)
    # make an array out of all the possible functions we want to represent
    force_space = np.vstack(forces)
    # use this array as our space to perform svd over
    fs = nengo.FunctionSpace(space=force_space, n_basis=10)

    # store the weights for each trajectory
    weights_x = []
    weights_y = []
    for ii in range(len(forces)):
        forces = force_space[ii*2:ii*2+2]
        # load up the forces to be output by the forcing function
        # calculate the corresponding weights over the basis functions
        weights_x.append(np.dot(fs.basis.T, forces[0]))
        weights_y.append(np.dot(fs.basis.T, forces[1]))

    # Create our vocabularies
    rng = np.random.RandomState(0)
    vocab_vision = Vocabulary(dimensions=dimensions, rng=rng)
    vocab_dmp_weights_x = Vocabulary(dimensions=fs.n_basis, rng=rng)
    vocab_dmp_weights_y = Vocabulary(dimensions=fs.n_basis, rng=rng)
    for label, sp, wx, wy in zip(
            sps_labels, sps, weights_x, weights_y):
        vocab_vision.add(
            label, np.array(sp)[0] / np.linalg.norm(np.array(sp)[0]))
        vocab_dmp_weights_x.add(label, wx)
        vocab_dmp_weights_y.add(label, wy)


    net = spa.SPA()
    # net.config[nengo.Ensemble].neuron_type = nengo.Direct()
    with net:

        # --------------------- Inputs --------------------------
        # def input_func(t):
        #     return vocab_vision.parse(input_signal).v
        # net.input = nengo.Node(input_func, label='input')
        net.input = spa.State(dimensions, subdimensions=10,
                              vocab=vocab_vision)

        number = nengo.Node(output=[0], label='number')

        # ------------------- Point Attractors --------------------
        net.x = point_attractor.generate(
            n_neurons=1000, alpha=alpha, beta=beta)
        net.y = point_attractor.generate(
            n_neurons=1000, alpha=alpha, beta=beta)

        # -------------------- Oscillators ----------------------
        kick = nengo.Node(nengo.utils.functions.piecewise({0: 1, .05: 0}),
                          label='kick')
        osc = oscillator.generate(net, n_neurons=2000, speed=.05)
        osc.label = 'oscillator'
        nengo.Connection(kick, osc[0])

        # ------------------- Forcing Functions --------------------

        net.assoc_mem_x = spa.AssociativeMemory(
            input_vocab=vocab_vision,
            output_vocab=vocab_dmp_weights_x,
            wta_output=False)
        nengo.Connection(net.input.output, net.assoc_mem_x.input)

        net.assoc_mem_y = spa.AssociativeMemory(
            input_vocab=vocab_vision,
            output_vocab=vocab_dmp_weights_y,
            wta_output=False)
        nengo.Connection(net.input.output, net.assoc_mem_y.input)

        # -------------------- Product for decoding -----------------------

        net.product_x = nengo.Network('Product X')
        nengo.networks.Product(n_neurons=1000,
                               dimensions=fs.n_basis,
                               net=net.product_x,
                               input_magnitude=1.0)
        net.product_y = nengo.Network('Product Y')
        nengo.networks.Product(n_neurons=1000,
                               dimensions=fs.n_basis,
                               net=net.product_y,
                               input_magnitude=1.0)

        # get the largest basis function value for normalization
        max_basis = np.max(fs.basis*fs.scale)
        domain = np.linspace(-np.pi, np.pi, fs.basis.shape[0])
        domain_cossin = np.array([np.cos(domain), np.sin(domain)]).T
        for ff, product in zip([net.assoc_mem_x.output,
                                net.assoc_mem_y.output],
                               [net.product_x, net.product_y]):
            for ii in range(fs.n_basis):
                # find the value of a basis function at a value of (x, y)
                target_function = nengo.utils.connection.target_function(
                    domain_cossin, fs.basis[:, ii]*fs.scale/max_basis)
                nengo.Connection(osc, product.B[ii], **target_function)
                # multiply the value of each basis function at x by its weight
            nengo.Connection(ff, product.A)

        nengo.Connection(net.product_x.output, net.x.input[1],
                         transform=np.ones((1, fs.n_basis)) * max_basis,
                         synapse=None)
        nengo.Connection(net.product_y.output, net.y.input[1],
                         transform=np.ones((1, fs.n_basis)) * max_basis,
                         synapse=None)

        # -------------------- Output ------------------------------

        net.output = nengo.Node(size_in=2, label='output')
        nengo.Connection(net.x.output, net.output[0])
        nengo.Connection(net.y.output, net.output[1])

        # create a node to give a plot of the represented function
        ff_plot = fs.make_plot_node(domain=domain, lines=2,
                                    ylim=[-1000000, 1000000])
        nengo.Connection(net.assoc_mem_x.output,
                         ff_plot[:fs.n_basis], synapse=0.1)
        nengo.Connection(net.assoc_mem_y.output,
                         ff_plot[fs.n_basis:], synapse=0.1)

    return net
예제 #5
0
# this is for creating a new type of object in the environment            
class Food(grid.ContinuousAgent):
    color = 'green'
    shape = 'circle'
            
# now we actuall make the world
world = grid.World(Cell, map=map, directions=4)
body = grid.ContinuousAgent()
world.add(body, x=2, y=4, dir=1) 
world.add(Food(), x=5, y=2)
#world.add(Food(), x=3, y=6)

D = 32
vocab = spa.Vocabulary(D)
model = spa.SPA(label="SearchFood")


class State(nengo.Node):
    def __init__(self, body):
        self.body = body
        super(State, self).__init__(self.update)
        
        
    def compute_angle_and_distance(self, obj):
        angle = (body.dir-1) * 2 * np.pi / 4
        dy = obj.y - self.body.y
        dx = obj.x - self.body.x
        obj_angle = np.arctan2(dy, dx)
        theta = angle - obj_angle
        dist = np.sqrt(dy**2 + dx**2)
예제 #6
0
import nengo
from nengo import spa

### Step 1: Create the model

# Notice that when you specify actions, you're determining which modules are connected to which. For example, by having a mapping that depends on the state of cortex, you are determining that the cortex and basal ganglia must be connected. As well, when you specify that the result of the action changes the state of cortex, then you are determining that thalamus must be connected to cortex.
#

# In[ ]:

# Number of dimensions for the Semantic Pointers
dimensions = 16

# Make a model object with the SPA network
model = spa.SPA(label='Routed_Sequence')

with model:
    # Specify the modules to be used
    model.cortex = spa.Buffer(dimensions=dimensions)
    model.vision = spa.Buffer(dimensions=dimensions)
    # Specify the action mapping
    actions = spa.Actions('dot(vision, START) --> cortex = vision',
                          'dot(cortex, A) --> cortex = B',
                          'dot(cortex, B) --> cortex = C',
                          'dot(cortex, C) --> cortex = D',
                          'dot(cortex, D) --> cortex = E',
                          'dot(cortex, E) --> cortex = A')
    model.bg = spa.BasalGanglia(actions=actions)
    model.thal = spa.Thalamus(model.bg)
예제 #7
0
# top-right shows the utility (similarity) of the current basal ganglia input
# (i.e., state) with the possible vocabulary vectors.

# You can see that in this model, even though the input is applied for 400ms, it
# doesn't prevent the activation of the second and subsequent rules in the
# sequence.

#Setup the environment
import nengo
from nengo import spa  #import spa related packages

#Number of dimensions for the Semantic Pointers
dimensions = 16

#Make a model object with the SPA network
model = spa.SPA(label='Routed_Sequence', seed=20)

with model:
    #Specify the modules to be used
    model.state = spa.State(dimensions=dimensions,
                            feedback=1,
                            feedback_synapse=0.01)
    model.vision = spa.State(dimensions=dimensions)

    #Specify the action mapping
    actions = spa.Actions('dot(vision, START) --> state = vision',
                          'dot(state, A) --> state = B',
                          'dot(state, B) --> state = C',
                          'dot(state, C) --> state = D',
                          'dot(state, D) --> state = E',
                          'dot(state, E) --> state = A')
예제 #8
0
def create_model(p):
    model = spa.SPA()

    if p.direct:
        model.config[nengo.Ensemble].neuron_type = nengo.Direct()
        force_neurons_cfg = nengo.Config(nengo.Ensemble)
        force_neurons_cfg[nengo.Ensemble].neuron_type = nengo.LIF()
    else:
        force_neurons_cfg = model.config

    with model:

        # control
        model.control_net = nengo.Network()
        with model.control_net:
            #assuming the model knows which hand to use (which was blocked)
            model.hand_input = nengo.Node(get_hand)
            model.target_hand = spa.State(p.Dmid,
                                          vocab=vocab_motor,
                                          feedback=1)
            nengo.Connection(model.hand_input,
                             model.target_hand.input,
                             synapse=None)

            model.attend = spa.State(p.D, vocab=vocab_attend,
                                     feedback=.5)  # vocab_attend
            model.goal = spa.State(p.Dlow, vocab=vocab_goal,
                                   feedback=.7)  # current goal

        if p.do_vision:
            from nengo_extras.vision import Gabor, Mask

            ### vision ###

            # set up network parameters
            n_vis = X_train.shape[1]  # nr of pixels, dimensions of network
            n_hid = 1000  # nr of gabor encoders/neurons

            # random state to start
            rng = np.random.RandomState(9)
            encoders = Gabor().generate(
                n_hid, (4, 4),
                rng=rng)  # gabor encoders, 11x11 apparently, why?
            encoders = Mask(
                (14,
                 90)).populate(encoders, rng=rng,
                               flatten=True)  # use them on part of the image

            model.visual_net = nengo.Network()
            with model.visual_net:

                #represent currently attended item
                model.attended_item = nengo.Node(present_item2, size_in=p.D)
                nengo.Connection(model.attend.output, model.attended_item)

                model.vision_gabor = nengo.Ensemble(
                    n_hid,
                    n_vis,
                    eval_points=X_train,
                    #    neuron_type=nengo.LIF(),
                    neuron_type=nengo.AdaptiveLIF(
                        tau_n=.01, inc_n=.05
                    ),  #to get a better fit, use more realistic neurons that adapt to input
                    intercepts=nengo.dists.Uniform(-0.1, 0.1),
                    #intercepts=nengo.dists.Choice([-0.5]), #should we comment this out? not sure what's happening
                    #max_rates=nengo.dists.Choice([100]),
                    encoders=encoders)
                #recurrent connection (time constant 500 ms)
                # strength = 1 - (100/500) = .8

                zeros = np.zeros_like(X_train)
                nengo.Connection(
                    model.vision_gabor,
                    model.vision_gabor,
                    synapse=0.005,  #.1
                    eval_points=np.vstack(
                        [X_train, zeros,
                         np.random.randn(*X_train.shape)]),
                    transform=.5)

                model.visual_representation = nengo.Ensemble(n_hid,
                                                             dimensions=p.Dmid)

                model.visconn = nengo.Connection(
                    model.vision_gabor,
                    model.visual_representation,
                    synapse=0.005,  #was .005
                    eval_points=X_train,
                    function=train_targets,
                    solver=nengo.solvers.LstsqL2(reg=0.01))
                nengo.Connection(model.attended_item,
                                 model.vision_gabor,
                                 synapse=.02)  #.03) #synapse?

                # display attended item, only in gui
                if p.gui:
                    # show what's being looked at
                    model.display_attended = nengo.Node(
                        display_func,
                        size_in=model.attended_item.size_out)  # to show input
                    nengo.Connection(model.attended_item,
                                     model.display_attended,
                                     synapse=None)
                    #add node to plot total visual activity
                    model.visual_activation = nengo.Node(None, size_in=1)
                    nengo.Connection(model.vision_gabor.neurons,
                                     model.visual_activation,
                                     transform=np.ones((1, n_hid)),
                                     synapse=None)
        else:
            model.visual_net = nengo.Network()
            with model.visual_net:
                model.fake_vision = nengo.Node(fake_vision, size_in=p.D)
            nengo.Connection(model.attend.output, model.fake_vision)

        ### central cognition ###

        ##### Concepts #####
        model.concepts = spa.AssociativeMemory(
            vocab_all_words,  #vocab_concepts,
            wta_output=True,
            wta_inhibit_scale=1,  #was 1
            #default_output_key='NONE', #what to say if input doesn't match
            threshold=0.3
        )  # how strong does input need to be for it to recognize
        if p.do_vision:
            nengo.Connection(
                model.visual_representation,
                model.concepts.input,
                transform=.8 * vision_mapping
            )  #not too fast to concepts, might have to be increased to have model react faster to first word.
        else:
            nengo.Connection(model.fake_vision,
                             model.concepts.input,
                             transform=.8,
                             synapse=0.025)

        #concepts accumulator
        with force_neurons_cfg:
            model.concepts_evidence = spa.State(
                1, feedback=1, feedback_synapse=0.005
            )  #the lower the synapse, the faster it accumulates (was .1)
        concepts_evidence_scale = 2.5
        nengo.Connection(model.concepts.am.elem_output,
                         model.concepts_evidence.input,
                         transform=concepts_evidence_scale * np.ones(
                             (1, model.concepts.am.elem_output.size_out)),
                         synapse=0.005)

        #concepts switch
        model.do_concepts = spa.AssociativeMemory(vocab_reset,
                                                  default_output_key='CLEAR',
                                                  threshold=.2)
        nengo.Connection(
            model.do_concepts.am.ensembles[-1],
            model.concepts_evidence.all_ensembles[0].neurons,
            transform=np.ones(
                (model.concepts_evidence.all_ensembles[0].n_neurons, 1)) * -10,
            synapse=0.005)

        ###### Visual Representation ######
        model.vis_pair = spa.State(
            p.D, vocab=vocab_all_words, feedback=1.0, feedback_synapse=.05
        )  #was 2, 1.6 works ok, but everything gets activated.

        model.p_vis_pair = nengo.Probe(model.vis_pair.output, synapse=0.01)

        if p.do_familiarity:
            assert p.do_motor
            ##### Familiarity #####
            # Assoc Mem with Learned Words
            # - familiarity signal should be continuous over all items, so no wta
            model.dm_learned_words = spa.AssociativeMemory(vocab_learned_words,
                                                           threshold=.2)
            nengo.Connection(model.dm_learned_words.output,
                             model.dm_learned_words.input,
                             transform=.4,
                             synapse=.02)

            # Familiarity Accumulator

            with force_neurons_cfg:
                model.familiarity = spa.State(
                    1, feedback=.9,
                    feedback_synapse=0.1)  #fb syn influences speed of acc
            #familiarity_scale = 0.2 #keep stable for negative fam

            # familiarity accumulator switch
            model.do_fam = spa.AssociativeMemory(vocab_reset,
                                                 default_output_key='CLEAR',
                                                 threshold=.2)
            # reset
            nengo.Connection(
                model.do_fam.am.ensembles[-1],
                model.familiarity.all_ensembles[0].neurons,
                transform=np.ones(
                    (model.familiarity.all_ensembles[0].n_neurons, 1)) * -10,
                synapse=0.005)

            #first a sum to represent summed similarity
            model.summed_similarity = nengo.Ensemble(n_neurons=100,
                                                     dimensions=1)
            nengo.Connection(
                model.dm_learned_words.am.elem_output,
                model.summed_similarity,
                transform=np.ones(
                    (1, model.dm_learned_words.am.elem_output.size_out
                     )))  #take sum

            #then a connection to accumulate this summed sim
            def familiarity_acc_transform(summed_sim):
                fam_scale = .5
                fam_threshold = 0  #actually, kind of bias
                fam_max = 1
                return fam_scale * (2 * ((summed_sim - fam_threshold) /
                                         (fam_max - fam_threshold)) - 1)

            nengo.Connection(model.summed_similarity,
                             model.familiarity.input,
                             function=familiarity_acc_transform)

            ##### Recollection & Representation #####

            model.dm_pairs = spa.AssociativeMemory(
                vocab_learned_pairs,
                wta_output=True)  #input_keys=list_of_pairs
            nengo.Connection(model.dm_pairs.output,
                             model.dm_pairs.input,
                             transform=.5,
                             synapse=.05)

            #representation
            rep_scale = 0.5
            model.representation = spa.State(p.D,
                                             vocab=vocab_all_words,
                                             feedback=1.0)
            with force_neurons_cfg:
                model.rep_filled = spa.State(
                    1, feedback=.9,
                    feedback_synapse=.1)  #fb syn influences speed of acc
            model.do_rep = spa.AssociativeMemory(vocab_reset,
                                                 default_output_key='CLEAR',
                                                 threshold=.2)
            nengo.Connection(
                model.do_rep.am.ensembles[-1],
                model.rep_filled.all_ensembles[0].neurons,
                transform=np.ones(
                    (model.rep_filled.all_ensembles[0].n_neurons, 1)) * -10,
                synapse=0.005)

            nengo.Connection(model.representation.output,
                             model.rep_filled.input,
                             transform=rep_scale *
                             np.reshape(sum(vocab_learned_pairs.vectors),
                                        ((1, p.D))))

            ###### Comparison #####

            model.comparison = spa.Compare(p.D,
                                           vocab=vocab_all_words,
                                           neurons_per_multiply=500,
                                           input_magnitude=.3)

            #turns out comparison is not an accumulator - we also need one of those.
            with force_neurons_cfg:
                model.comparison_accumulator = spa.State(
                    1, feedback=.9,
                    feedback_synapse=0.05)  #fb syn influences speed of acc
            model.do_compare = spa.AssociativeMemory(
                vocab_reset, default_output_key='CLEAR', threshold=.2)

            #reset
            nengo.Connection(
                model.do_compare.am.ensembles[-1],
                model.comparison_accumulator.all_ensembles[0].neurons,
                transform=np.ones(
                    (model.comparison_accumulator.all_ensembles[0].n_neurons,
                     1)) * -10,
                synapse=0.005)

            #error because we apply a function to a 'passthrough' node, inbetween ensemble as a solution:
            model.comparison_result = nengo.Ensemble(n_neurons=100,
                                                     dimensions=1)
            nengo.Connection(model.comparison.output, model.comparison_result)

            def comparison_acc_transform(comparison):
                comparison_scale = .6
                comparison_threshold = 0  #actually, kind of bias
                comparison_max = .6
                return comparison_scale * (2 * (
                    (comparison - comparison_threshold) /
                    (comparison_max - comparison_threshold)) - 1)

            nengo.Connection(model.comparison_result,
                             model.comparison_accumulator.input,
                             function=comparison_acc_transform)

        if p.do_motor:

            #motor
            model.motor_net = nengo.Network()
            with model.motor_net:

                #input multiplier
                model.motor_input = spa.State(p.Dmid, vocab=vocab_motor)

                #higher motor area (SMA?)
                model.motor = spa.State(p.Dmid, vocab=vocab_motor, feedback=.7)

                #connect input multiplier with higher motor area
                nengo.Connection(model.motor_input.output,
                                 model.motor.input,
                                 synapse=.1,
                                 transform=2)

                #finger area
                model.fingers = spa.AssociativeMemory(
                    vocab_fingers,
                    input_keys=['L1', 'L2', 'R1', 'R2'],
                    wta_output=True)
                nengo.Connection(model.fingers.output,
                                 model.fingers.input,
                                 synapse=0.1,
                                 transform=0.3)  #feedback

                #conncetion between higher order area (hand, finger), to lower area
                nengo.Connection(model.motor.output,
                                 model.fingers.input,
                                 transform=.25 * motor_mapping)  #was .2

                #finger position (spinal?)
                model.finger_pos = nengo.networks.EnsembleArray(n_neurons=50,
                                                                n_ensembles=4)
                nengo.Connection(model.finger_pos.output,
                                 model.finger_pos.input,
                                 synapse=0.1,
                                 transform=0.8)  #feedback

                #connection between finger area and finger position
                nengo.Connection(model.fingers.am.elem_output,
                                 model.finger_pos.input,
                                 transform=1.0 *
                                 np.diag([0.55, .54, .56, .55]))  #fix these

        actions = dict(
            #wait & start
            a_aa_wait='dot(goal,WAIT) - .9 --> goal=0',
            a_attend_item1=
            'dot(goal,DO_TASK) - .0 --> goal=RECOG, attend=ITEM1, do_concepts=GO',

            #attend words
            b_attending_item1=
            'dot(goal,RECOG) + dot(attend,ITEM1) - concepts_evidence - .3 --> goal=RECOG, attend=ITEM1, do_concepts=GO',  # vis_pair=2.5*(ITEM1*concepts)',
            c_attend_item2=
            'dot(goal,RECOG) + dot(attend,ITEM1) + concepts_evidence - 1.6 --> goal=RECOG2, attend=ITEM2, vis_pair=3*(ITEM1*concepts)',
            d_attending_item2=
            'dot(goal,RECOG2+RECOG) + dot(attend,ITEM2) - concepts_evidence - .4 --> goal=RECOG2, attend=ITEM2, do_concepts=GO',
            e_start_familiarity=
            'dot(goal,RECOG2) + dot(attend,ITEM2) + concepts_evidence - 1.8 --> goal=FAMILIARITY, vis_pair=1.9*(ITEM2*concepts)',
        )
        if p.do_familiarity:
            actions[
                'd_attending_item2'] += ', dm_learned_words=1.0*(~ITEM1*vis_pair)'
            actions[
                'e_start_familiarity'] += ', do_fam=GO, dm_learned_words=2.0*(~ITEM1*vis_pair+~ITEM2*vis_pair)'
            actions.update(
                dict(
                    #judge familiarity
                    f_accumulate_familiarity=
                    '1.1*dot(goal,FAMILIARITY) - 0.2 --> goal=FAMILIARITY-RECOG2, do_fam=GO, dm_learned_words=.8*(~ITEM1*vis_pair+~ITEM2*vis_pair)',
                    g_respond_unfamiliar=
                    'dot(goal,FAMILIARITY) - familiarity - .5*dot(fingers,L1+L2+R1+R2) - .6 --> goal=RESPOND_MISMATCH-FAMILIARITY, do_fam=GO, motor_input=1.6*(target_hand+MIDDLE)',
                    #g2_respond_familiar =   'dot(goal,FAMILIARITY) + familiarity - .5*dot(fingers,L1+L2+R1+R2) - .6 --> goal=RESPOND, do_fam=GO, motor_input=1.6*(target_hand+INDEX)',

                    #recollection & representation
                    h_recollection=
                    'dot(goal,FAMILIARITY) + familiarity - .5*dot(fingers,L1+L2+R1+R2) - .6 --> goal=RECOLLECTION-FAMILIARITY, dm_pairs = vis_pair',
                    i_representation=
                    'dot(goal,RECOLLECTION) - rep_filled - .1 --> goal=RECOLLECTION, dm_pairs = vis_pair, representation=3*dm_pairs, do_rep=GO',

                    #comparison & respond
                    j_10_compare_word1=
                    'dot(goal,RECOLLECTION+1.4*COMPARE_ITEM1) + rep_filled - .9 --> goal=COMPARE_ITEM1-RECOLLECTION, do_rep=GO, do_compare=GO, comparison_A = ~ITEM1*vis_pair, comparison_B = ~ITEM1*representation',
                    k_11_match_word1=
                    'dot(goal,COMPARE_ITEM1) + comparison_accumulator - .7 --> goal=COMPARE_ITEM2-COMPARE_ITEM1, do_rep=GO, comparison_A = ~ITEM1*vis_pair, comparison_B = ~ITEM1*representation',
                    l_12_mismatch_word1=
                    'dot(goal,COMPARE_ITEM1) + .4 * dot(goal,RESPOND_MISMATCH) - comparison_accumulator - .7 --> goal=RESPOND_MISMATCH-COMPARE_ITEM1, do_rep=GO, motor_input=1.6*(target_hand+MIDDLE), do_compare=GO, comparison_A = ~ITEM1*vis_pair, comparison_B = ~ITEM1*representation',
                    compare_word2=
                    'dot(goal,COMPARE_ITEM2) - .5 --> goal=COMPARE_ITEM2, do_compare=GO, comparison_A = ~ITEM2*vis_pair, comparison_B = ~ITEM2*representation',
                    m_match_word2=
                    'dot(goal,COMPARE_ITEM2) + comparison_accumulator - .7 --> goal=RESPOND_MATCH-COMPARE_ITEM2, motor_input=1.6*(target_hand+INDEX), do_compare=GO, comparison_A = ~ITEM2*vis_pair, comparison_B = ~ITEM2*representation',
                    n_mismatch_word2=
                    'dot(goal,COMPARE_ITEM2) - comparison_accumulator - dot(fingers,L1+L2+R1+R2)- .7 --> goal=RESPOND_MISMATCH-COMPARE_ITEM2, motor_input=1.6*(target_hand+MIDDLE),do_compare=GO, comparison_A = ~ITEM2*vis_pair, comparison_B = ~ITEM2*representation',

                    #respond
                    o_respond_match=
                    'dot(goal,RESPOND_MATCH) - .1 --> goal=RESPOND_MATCH, motor_input=1.6*(target_hand+INDEX)',
                    p_respond_mismatch=
                    'dot(goal,RESPOND_MISMATCH) - .1 --> goal=RESPOND_MISMATCH, motor_input=1.6*(target_hand+MIDDLE)',

                    #finish
                    x_response_done=
                    'dot(goal,RESPOND_MATCH) + dot(goal,RESPOND_MISMATCH) + 2*dot(fingers,L1+L2+R1+R2) - .7 --> goal=2*END',
                    y_end=
                    'dot(goal,END)-.1 --> goal=END-RESPOND_MATCH-RESPOND_MISMATCH',
                    z_threshold='.05 --> goal=0'

                    #possible to match complete buffer, ie is representation filled?
                    # motor_input=1.5*target_hand+MIDDLE,
                ))

        with force_neurons_cfg:
            model.bg = spa.BasalGanglia(spa.Actions(**actions))

        with force_neurons_cfg:
            model.thalamus = spa.Thalamus(model.bg)

        model.p_bg_input = nengo.Probe(model.bg.input)
        model.p_thal_output = nengo.Probe(model.thalamus.actions.output,
                                          synapse=0.01)

        #probes
        if p.do_motor:
            model.pr_motor_pos = nengo.Probe(
                model.finger_pos.output,
                synapse=.01)  #raw vector (dimensions x time)
            model.pr_motor = nengo.Probe(model.fingers.output, synapse=.01)
        #model.pr_motor1 = nengo.Probe(model.motor.output, synapse=.01)

        #if not p.gui:
        #    model.pr_vision_gabor = nengo.Probe(model.vision_gabor.neurons,synapse=.005) #do we need synapse, or should we do something with the spikes
        #    model.pr_familiarity = nengo.Probe(model.dm_learned_words.am.elem_output,synapse=.01) #element output, don't include default
        #    model.pr_concepts = nengo.Probe(model.concepts.am.elem_output, synapse=.01)  # element output, don't include default

        #multiply spikes with the connection weights

        #input
        model.input = spa.Input(goal=goal_func)

        if p.gui:
            vocab_actions = spa.Vocabulary(model.bg.output.size_out)
            for i, action in enumerate(model.bg.actions.actions):
                vocab_actions.add(action.name.upper(),
                                  np.eye(model.bg.output.size_out)[i])
            model.actions = spa.State(model.bg.output.size_out,
                                      subdimensions=model.bg.output.size_out,
                                      vocab=vocab_actions)
            nengo.Connection(model.thalamus.output, model.actions.input)

            for net in model.networks:
                if net.label is not None and net.label.startswith('channel'):
                    net.label = ''
    return model
예제 #9
0
파일: model.py 프로젝트: ikajic/spa-poem
def create_model(D=512, incl_interoception=False, query=False):
    vocabulary = sim.Experiment()

    # Create semantic pointers in each network
    spa_voc = utils.create_spa_vocabulary(vocabulary, randomize=True, D=D)
    
    # Episodic and affect integrate two vocabularies
    input_episodic = utils.add_vocabularies(spa_voc, 'sensory', 'conceptualization')
    input_affect = utils.add_vocabularies(spa_voc, 'episodic', 'interoception')

    with spa.SPA('POEM') as model:
        # Sensory
        model._sensory = spa.State(D, vocab=spa_voc['sensory'])
                            
        # Episodic
        episodic_output_keys = utils.keys_from_input(input_episodic.keys)
        
        zoo_idx = input_episodic.keys.index('Conceptualization_ZOO')
        episodic_output_keys[zoo_idx] = '2*ZOO-2*GLASS-2*SNAKE'

        model._episodic = Memory(input_vocab=input_episodic,
                                output_vocab=spa_voc['episodic'],
                                input_keys=input_episodic.keys,
                                output_keys=episodic_output_keys,
                                wta_output=True,
                                wta_inhibit_scale=0.1,
                                threshold_output=True)

        ep_output_vectors = np.array([spa_voc['episodic'].parse(key).v for key in\
            episodic_output_keys], ndmin=2)

        if query:
            model.query = spa.State(D, vocab=spa_voc['sensory'])
            model.bind = spa.Bind(D, invert_b=True)
            nengo.Connection(model.bind.output, model._episodic.input,
                             transform=3)
            nengo.Connection(model._sensory.input, model.bind.A)
            nengo.Connection(model.query.input, model.bind.B)
        else:
            nengo.Connection(model._sensory.output, model._episodic.input,
                             transform=3)  # 3 because inputs set by cloud are
                                           # not normalized

        # Language
        model._language = Memory(input_vocab=spa_voc['episodic'],
                                output_vocab=spa_voc['language'])

        nengo.Connection(model._episodic.am.elem_output, model._language.input,
                         transform=ep_output_vectors.T)
                         
        # Conceptualization
        model._conceptualization = Memory(input_vocab=spa_voc['language'],
                               output_vocab=spa_voc['conceptualization'],
                               wta_output=True,
                               wta_synapse=.05,
                               threshold_output=True,
                               wta_inhibit_scale=.3)
                               
        trans_mat = vocabulary.custom_transform(spa_voc['language'], D=D)
        nengo.Connection(model._language.output, model._conceptualization.input,
                         transform=trans_mat.T, synapse=0.01)
        nengo.Connection(model._conceptualization.output, model._episodic.input,
                         synapse=0.3)
        
        # Interoception
        if incl_interoception:
            model._interoception = spa.State(D, vocab=spa_voc['interoception'])

        # Affect: EPA expressions at the output
        input_words = utils.keys_from_input(input_affect.keys)
        epa_expressions_words = utils.get_epa_expression(input_words)

        model._affect = Memory(input_vocab=input_affect,
                              output_vocab=spa_voc['affect'],
                              input_keys=input_affect.keys,
                              output_keys=epa_expressions_words,
                              wta_output=False,
                              threshold=0.4)
        if incl_interoception:
            nengo.Connection(model._interoception.output, model._affect.input,
                             transform=1.)
        
        print(input_affect.keys)                         
        
        # Emotion detection network (comment if not needed)
        model.active = nengo.Ensemble(n_neurons=200, dimensions=3)
        model.emotion_present = nengo.Ensemble(n_neurons=50, dimensions=1)
        nengo.Connection(model._affect.output[[0, 1, 2]], model.active)
        nengo.Connection(model.active, model.emotion_present, function=lambda x: np.sum(x**2))
        
        
        nengo.Connection(model._episodic.output, model._affect.input)
        # Executive: EPA expressions at the input
        emotion_tags = spa_voc['executive'].keys
        epa_expressions = utils.get_epa_expression(emotion_tags)
        
        model._executive = Memory(input_vocab=spa_voc['affect'],
                                 output_vocab=spa_voc['executive'],
                                 input_keys=epa_expressions,
                                 output_keys=emotion_tags,
                                 threshold=0.8)

        nengo.Connection(model._affect.output, model._executive.input,
                         transform=3)
                         
    return model, spa_voc
예제 #10
0
def _test_sequence(Simulator, plt, seed, outfile, prune_passthrough):
    dimensions = 32
    subdimensions = 16
    T = 4.0
    seq_length = 6

    with spa.SPA(seed=seed) as model:
        model.state = spa.Memory(dimensions=dimensions,
                                 subdimensions=subdimensions)

        seq_actions = [
            'dot(state,A%d) --> state=A%d' % (i, (i + 1) % seq_length)
            for i in range(seq_length)
        ]

        model.bg = spa.BasalGanglia(spa.Actions(*seq_actions))
        model.thal = spa.Thalamus(model.bg)

        def stim_state(t):
            if t < 0.1:
                return 'A0'
            else:
                return '0'

        model.input = spa.Input(state=stim_state)

        p_state = nengo.Probe(model.state.state.output, synapse=0.01)

        if 'spinnaker' in Simulator.__module__:
            nengo_spinnaker.add_spinnaker_params(model.config)
            model.config[
                model.input.input_nodes['state']].function_of_time = True

    vocab = model.get_input_vocab('state')

    if prune_passthrough:
        model = remove_passthrough_nodes(model)

    sim = Simulator(model)
    sim.run(T)

    t = sim.trange()
    data = sim.data[p_state]
    ideal = np.array([vocab.parse('A%d' % i).v for i in range(seq_length)])
    dotp = np.dot(data, ideal.T)

    best = np.argmax(dotp, axis=1)
    delta = np.diff(best)
    indexes = np.where(delta != 0)
    # [:, 1:] ignores the first transition, which is meaningless
    delta_t = np.diff(indexes)[:, 1:] * 0.001

    mean = np.mean(delta_t)
    std = np.std(delta_t)

    outfile.write('"n_neurons": %d,\n' % sum(e.n_neurons
                                             for e in model.all_ensembles))
    outfile.write('"simtime": %f,\n' % T)
    outfile.write('"timing_mean": %f,\n' % mean)
    outfile.write('"timing_std": %f,\n' % std)

    figsize = (onecolumn, 4.0) if horizontal else (onecolumn * 2, 3.0)
    setup(figsize=figsize,
          palette_args={
              'palette': "cubehelix",
              'n_colors': 6
          })
    plt.plot(t[t < 1.0], dotp[t < 1.0])
    for transition in t[indexes[0]]:
        plt.axvline(transition, c='0.5', lw=1, ls=':')
    plt.ylabel('Similarity to item')
    plt.xlabel('Time (s)')
    plt.xlim(right=1.0)
    sns.despine()
    if prune_passthrough:
        plt.saveas = 'results-4.svg'
    else:
        plt.saveas = 'results-5.svg'

    if hasattr(sim, 'close'):
        sim.close()
예제 #11
0
        [r_2, r_22, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    vects['input3'].append(
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, r_3, r_32, r_3, r_3])

    dimensions = 16  #number of dimensions for semantic pointers

    # change these slightly to create individual variation
    vocab = spa.Vocabulary(dimensions, randomize=False)
    # vocab.add('ON_1',[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
    # vocab.add('ON_2',[0.4,0.4,0.2,0,0,0,0,0,0,0,0,0,0,0,0,0])
    # vocab.add('REST',[0,0,0,0,0,0,0,0,0,0,0,0,0.25,0.25,0.25,0.25])
    vocab.add('ON_1', vects['input1'][subject])
    vocab.add('ON_2', vects['input2'][subject])
    vocab.add('REST', vects['input3'][subject])

    model = spa.SPA(dimensions, vocabs=vocab)
    with model:
        model.cortex = spa.Buffer(dimensions=dimensions)

        #print model.get_default_vocab(dimensions).parse("ON_1")

        #action mapping
        actions = spa.Actions(
            'dot(cortex, ON_1) --> cortex = ON_1',
            'dot(cortex, ON_2) --> cortex = ON_2',
            'dot(cortex, REST) --> cortex = REST',
        )
        model.bg = spa.BasalGanglia(actions=actions)
        model.thal = spa.Thalamus(model.bg)

    ##########################
예제 #12
0
import matplotlib.pyplot as plt

import nengo
from nengo import spa

# ## Create the model
#
# Notice that when you specify actions, you're determining which modules are connected to which. For example, by having a mapping that depends on the state of cortex, you are determining that the cortex and basal ganglia must be connected. As well, when you specify that the result of the action changes the state of cortex, then you are determining that thalamus must be connected to cortex.

# In[ ]:

# Number of dimensions for the Semantic Pointers
dimensions = 128

# Make a model object with the SPA network
model = spa.SPA(label='Controlled_Question_Answering')

with model:
    # Specify the modules to be used
    model.vision = spa.Buffer(dimensions=dimensions, neurons_per_dimension=100)
    model.motor = spa.Buffer(dimensions=dimensions, neurons_per_dimension=100)
    model.memory = spa.Memory(dimensions=dimensions,
                              neurons_per_dimension=100,
                              synapse=0.1)

    # Specify the action mapping
    actions = spa.Actions(
        'dot(vision, STATEMENT) --> memory = vision',
        'dot(vision, QUESTION) --> motor = ~vision*memory',
    )
    model.bg = spa.BasalGanglia(actions=actions)
예제 #13
0
    def __init__(self,
                 mapping,
                 D_category=16,
                 D_items=16,
                 threshold=0.4,
                 learning_rate=1e-4):
        model = spa.SPA()
        self.model = model
        self.mapping = mapping
        self.vocab_category = spa.Vocabulary(D_category)
        self.vocab_items = spa.Vocabulary(D_items)
        self.vocab_items_temp = spa.Vocabulary(D_items)

        for k in sorted(
                mapping.keys()):  #allocating verctors for categories name
            self.vocab_category.parse(k)
            for v in mapping[k]:  # allocating vectors to the items
                self.vocab_items.parse(v)

        with model:
            model.category = spa.State(D_category, vocab=self.vocab_category)
            model.items = spa.State(D_items,
                                    vocab=self.vocab_items,
                                    subdimensions=64)
            #encoders = ens.encoders.sample(n=ens.n_neurons, d=D)
            n_neuron = model.items.state_ensembles.all_ensembles[0].n_neurons
            encoders = model.items.state_ensembles.all_ensembles[
                0].encoders.sample(n=n_neuron, d=D_items)
            related = 0.5
            w = 1.0 / related - 1
            count = 1
            for k in sorted(mapping.keys()[:4]):  #Practiced Category
                for item in mapping[k][:2]:  #low freq items
                    for i in range((count - 1) * 50, count * 50):
                        encoders[i] = -self.vocab_items.parse(
                            item).v + w * encoders[i]
                        encoders[i] = encoders[i] / np.linalg.norm(encoders[i])
                    count = count + 1
            model.items.state_ensembles.all_ensembles[0].encoders = encoders

            def learned(x):
                cats = np.dot(self.vocab_category.vectors, x)
                best_index = np.argmax(
                    cats
                )  #takes the category which has the largest projection of x
                if cats[best_index] < threshold:
                    return self.vocab_items.parse('0').v
                else:  #generate the sum vector
                    k = self.vocab_category.keys[best_index]
                    total = '+'.join(self.mapping[k])
                    v = self.vocab_items.parse(total).v
                    return v / (2 * np.linalg.norm(v))

            c = nengo.Connection(
                model.category.all_ensembles[0],
                model.items.input,
                function=learned,
                learning_rule_type=nengo.PES(learning_rate=learning_rate))

            model.error = spa.State(D_items, vocab=self.vocab_items)
            nengo.Connection(model.items.output, model.error.input)
            nengo.Connection(model.error.output, c.learning_rule)

            self.stim_category_value = np.zeros(D_category)
            self.stim_category = nengo.Node(self.stim_category)
            nengo.Connection(self.stim_category,
                             model.category.input,
                             synapse=None)

            self.stim_correct_value = np.zeros(D_items)
            self.stim_correct = nengo.Node(self.stim_correct)
            nengo.Connection(self.stim_correct,
                             model.error.input,
                             synapse=None,
                             transform=-1)

            self.stim_stoplearn_value = np.zeros(1)
            self.stim_stoplearn = nengo.Node(self.stim_stoplearn)
            for ens in model.error.all_ensembles:
                nengo.Connection(self.stim_stoplearn,
                                 ens.neurons,
                                 synapse=None,
                                 transform=-10 * np.ones((ens.n_neurons, 1)))

            self.stim_justmemorize_value = np.zeros(1)
            self.stim_justmemorize = nengo.Node(self.stim_justmemorize)
            for ens in model.items.all_ensembles:
                nengo.Connection(self.stim_justmemorize,
                                 ens.neurons,
                                 synapse=None,
                                 transform=-10 * np.ones((ens.n_neurons, 1)))

            self.probe_items = nengo.Probe(model.items.output, synapse=0.01)

        self.sim = nengo.Simulator(self.model)
예제 #14
0
    # random locations
    rng_items = np.random.RandomState(seed=args.item_seed)
    locs = rng_items.uniform(0, 10, size=(7, 2))
    items = OrderedDict({
        "Tree": locs[0, :],
        "Pond": locs[1, :],
        "Well": locs[2, :],
        "Rock": locs[3, :],
        "Reed": locs[4, :],
        "Lake": locs[5, :],
        "Bush": locs[6, :]
    })

shape = (10, 10)

model = spa.SPA(seed=seed)

action_vocab = spa.Vocabulary(3, randomize=False)

item_vocab = spa.Vocabulary(D, randomize=randomize)
# item_vocab = spa.Vocabulary(len(items), randomize=True)
"""
keys = np.array([[1,0,0,0],
          [0,1,0,0],
          [0,0,1,0],
          [0,0,0,1],
         ])
"""

keys = np.eye(len(items))
예제 #15
0
vocab_goal.parse(
    'START+RETRIEVE+COMPARE+RESPOND+DONE+START_COUNTING+UPDATE_RESULT+STORE_RESULT+UPDATE_COUNT+STORE_COUNT+COMPARE_COUNT'
)

#vocab reset
vocab_reset = spa.Vocabulary(Dlow, rng=rng_vocabs)
vocab_reset.parse('CLEAR+GO')

#vocab_motor
vocab_motor = spa.Vocabulary(Dlow, rng=rng_vocabs)
vocab_motor.parse('YES')
vocab_motor.parse('NO')

###### Model #######

model = spa.SPA(seed=fseed)

with model:

    #Vision & Goal
    model.vision = spa.State(D, vocab=vocab_concepts)  #visual input

    model.goalnet = nengo.Network(seed=fseed)
    with model.goalnet:
        model.goal = spa.State(Dlow, vocab=vocab_goal,
                               feedback=.5)  #goal state #.75
        model.count = spa.State(
            D, vocab=vocab_concepts, feedback=.8,
            feedback_synapse=.05)  #the number of counts taken
        model.target = spa.State(D, vocab=vocab_concepts,
                                 feedback=1)  #target answer from vision
예제 #16
0
def SyllableSequence(n_per_d, syllable_d, syllables,
                     difference_gain=15, n_positions=7,
                     threshold_memories=True, add_default_output=True,
                     rng=np.random, net=None):
    if net is None:
        net = spa.SPA("Syllable sequence")
    assert isinstance(net, spa.SPA), "Network must be a SPA instance."

    vocab = spa.Vocabulary(dimensions=syllable_d,
                           rng=rng,
                           unitary=['INC', 'POS1'])
    vocab.parse('INC + POS1')
    for i in range(2, n_positions+1):
        vocab.add('POS%d' % i, vocab.parse('POS%d * INC' % (i-1)))
    vocab.parse(" + ".join(syllables))
    syll_vocab = vocab.create_subset(syllables)
    net.vocab = vocab

    with net:
        # --- Input sequence
        net.sequence = spa.State(dimensions=syllable_d,
                                 neurons_per_dimension=n_per_d)

        # --- Input gated memories iterate through position vectors
        net.pos_curr = InputGatedMemory(
            n_per_d, dimensions=syllable_d, difference_gain=difference_gain)
        net.pos_next = InputGatedMemory(
            n_per_d, dimensions=syllable_d, difference_gain=difference_gain)
        # Switch from current to next with reciprocal connections
        nengo.Connection(net.pos_curr.output, net.pos_next.input)
        nengo.Connection(net.pos_next.output, net.pos_curr.input,
                         transform=vocab['INC'].get_convolution_matrix())
        # Switching depends on gate; get gate input elsewhere
        net.gate = nengo.Node(size_in=1)
        # pos gets gate
        nengo.Connection(net.gate, net.pos_curr.gate, synapse=None)
        # pos_next gets 1 - gate
        net.gate_bias = nengo.Node(output=1)
        nengo.Connection(net.gate_bias, net.pos_next.gate, synapse=None)
        nengo.Connection(net.gate, net.pos_next.gate,
                         transform=-1, synapse=None)

        # --- Get syllables with unbinding
        net.bind = CircularConvolution(
            n_per_d, syllable_d, invert_a=False, invert_b=True)
        net.bind_next = CircularConvolution(
            n_per_d, syllable_d, invert_a=False, invert_b=True)
        nengo.Connection(net.sequence.output, net.bind.A)
        nengo.Connection(net.sequence.output, net.bind_next.A)
        nengo.Connection(net.pos_curr.output, net.bind.B)
        nengo.Connection(net.pos_next.output, net.bind_next.B,
                         transform=vocab['INC'].get_convolution_matrix())

        # --- Clean up noisy syllables with associative memories
        net.syllable = spa.AssociativeMemory(
            syll_vocab, wta_output=True, threshold_output=threshold_memories)
        net.syllable_next = spa.AssociativeMemory(
            syll_vocab, wta_output=True, threshold_output=threshold_memories)
        nengo.Connection(net.bind.output, net.syllable.input)
        nengo.Connection(net.bind_next.output, net.syllable_next.input)
        if add_default_output:
            default = np.zeros(syllable_d)
            net.syllable.am.add_default_output_vector(default)
            net.syllable_next.am.add_default_output_vector(default)

    return net
예제 #17
0
import nengo
import nengo.spa as spa

D = 16

model = spa.SPA(seed=1)
with model:
    model.a = spa.Buffer(dimensions=D)
    model.b = spa.Buffer(dimensions=D)
    model.c = spa.Buffer(dimensions=D)
    model.cortical = spa.Cortical(spa.Actions('c = a+b', ))

    model.input = spa.Input(
        a='A',
        b=(lambda t: 'C*~A' if (t % 0.1 < 0.05) else 'D*~A'),
    )

if __name__ == '__main__':
    import nengo_gui
    nengo_gui.Viz(__file__).start()
예제 #18
0
import nengo
import nengo.spa as spa
import numpy as np
import time

dimensions = 32
vocab = spa.Vocabulary(dimensions)
model = spa.SPA(label='ActionExchange')
"""
class ActionState(nengo.Node):

	def __init__(self):
		self.action = "WAIT"
		super(ActionState, self).__init__(self.update)
	
	def parse_action(t, action):
		turn = vocab.parse("TURN").v
		wait = vocab.parse("WAIT").v

		if np.dot(action, turn) > np.dot(action, wait):
			self.turn()
			return "WAIT"


	def turn():
		time.sleep(2)
		pass

	def update(self, t):
		if self.action == "TURN":
			self.turn()
예제 #19
0
# vecotors A and B).

# Setup the environment
import nengo
import nengo.spa as spa
from nengo.spa import Vocabulary
import numpy as np

D = 32  # the dimensionality of the vectors

#Creating a vocabulary
rng = np.random.RandomState(0)
vocab = Vocabulary(dimensions=D, rng=rng)
vocab.add('C', vocab.parse('A * B'))

model = spa.SPA(label="structure", vocabs=[vocab])
with model:
    model.A = spa.State(D)
    model.B = spa.State(D)
    model.C = spa.State(D, feedback=1)
    model.Sum = spa.State(D)

    actions = spa.Actions(
        'C = A * B',
        'Sum = A',
        'Sum = B'
        )

    model.cortical = spa.Cortical(actions)
    
    #Input
    def model(self, p):
        vis_items = ['FATIGUE', 'WHISKEY']
        vis_vocab = spa.Vocabulary(p.D)
        self.vis_items = vis_items
        self.vis_vocab = vis_vocab

        result_vocab_items = ['SAME']
        input_items = ['PUSH']
        action_items = ['F1']
        self.result_vocab_items = result_vocab_items
        self.input_items = input_items
        self.action_items = action_items

        ##### Vision and motor system #########
        import vision_system as v
        import motor_system as m
        reload(v)
        reload(m)

        directory = '/home/stacy/github/visual-categorization/assoc_recog_s/images/'
        image_list = v.load_images(directory, items=vis_items)
        output_list = v.vector_gen_function(vis_items, vocab=vis_vocab)
        self.directory = directory
        self.image_list = image_list
        self.output_list = output_list

        model = spa.SPA(label='MAIN')
        with model:
            model.vision_system = v.make_vision_system(
                image_list,
                output_list,
                n_neurons=500,
                AIT_V1_strength=p.AIT_V1_strength,
                AIT_r_transform=p.AIT_r_transform,
                V1_r_transform=p.V1_r_transform)
            model.concept = spa.State(p.D, vocab=vis_vocab)
            nengo.Connection(model.vision_system.AIT, model.concept.input)

            model.compare = spa.Compare(p.D)
            model.wm = spa.State(p.D, vocab=vis_vocab)
            model.result = spa.State(p.D, feedback=p.result_feedback)

            nengo.Connection(model.concept.output,
                             model.compare.inputA,
                             synapse=0.01)
            nengo.Connection(model.wm.output, model.compare.inputB)

            vocab = model.get_input_vocab('result')
            nengo.Connection(model.compare.output,
                             model.result.input,
                             transform=p.compare_to_result_strength *
                             np.array([vocab.parse('SAME').v]).T)

            def result_to_motor(in_vocab, out_vocab):
                mapping = np.zeros((p.D, p.D))
                for i in range(len(input_items)):
                    mapping += np.outer(
                        in_vocab.parse(result_vocab_items[i]).v,
                        out_vocab.parse(input_items[i]).v)
                transform = mapping.T
                return transform

            model.motor_system = m.make_motor_system(
                input_items,
                action_items,
                motor_feedback=p.motor_feedback,
                motor_transform=p.motor_transform,
                finger_feedback=p.finger_feedback,
                motor_to_fingers_strength=p.motor_to_fingers_strength)

            nengo.Connection(model.result.output,
                             model.motor_system.motor_input.input,
                             transform=result_to_motor(
                                 vocab, model.motor_system.motor_vocab))

            def present_func(t):
                if t < 1:
                    index = 0
                else:
                    index = 1
                return image_list[index]

            stim = nengo.Node(present_func)
            nengo.Connection(stim, model.vision_system.presentation_node)

            stim_wm = nengo.Node(
                model.get_input_vocab('wm').parse('FATIGUE').v)
            nengo.Connection(stim_wm, model.wm.input)

            self.V1_probe = nengo.Probe(model.vision_system.V1)
            self.AIT_probe = nengo.Probe(model.vision_system.AIT,
                                         synapse=0.005)

            self.PFC_probe = nengo.Probe(model.compare.output, synapse=0.005)
            self.PMC_probe = nengo.Probe(model.result.output, synapse=0.005)
            self.MC_probe = nengo.Probe(model.motor_system.motor.output,
                                        synapse=0.005)
            self.finger_probe = nengo.Probe(model.motor_system.fingers.output,
                                            synapse=0.005)

            self.final_probe = nengo.Probe(
                model.motor_system.finger_pos.output, synapse=0.005)
            self.mymodel = model
        return model
예제 #21
0
import nengo
import nengo.spa as spa
import numpy as np

D = 32
vocab = spa.Vocabulary(D)
food_vocab = spa.Vocabulary(D)
sub_vocab = spa.Vocabulary(D)

model = spa.SPA(label="Find Food")

with model:

    def starter(t):
        if t < 0.05:
            return "START_FIND_FOOD"
        else:
            return "0"

    def food_exist_func(t):
        if t < 0.5:
            return "NO_FOOD"
        else:
            return "FOOD"

    def food_close_func(t):
        if t < 1:
            return "NO_FOOD"
        else:
            return "CLOSE"
예제 #22
0
import nengo.spa as spa
from nengo.spa import Vocabulary
import numpy as np

D = 32  # the dimensionality of the vectors
rng = np.random.RandomState(7)
vocab = Vocabulary(dimensions=D, rng=rng, max_similarity=0.1)

#Adding semantic pointers to the vocabulary
CIRCLE = vocab.parse('CIRCLE')
BLUE = vocab.parse('BLUE')
RED = vocab.parse('RED')
SQUARE = vocab.parse('SQUARE')
ZERO = vocab.add('ZERO', [0] * D)

model = spa.SPA(label="Question Answering", vocabs=[vocab])
with model:

    model.A = spa.State(D, label="color")
    model.B = spa.State(D, label="shape")
    model.C = spa.State(D, label="cue")
    model.D = spa.State(D, label="bound")
    model.E = spa.State(D, label="output")

    actions = spa.Actions(
        'D = A * B',
        'E = D * ~C',
    )

    model.cortical = spa.Cortical(actions)
예제 #23
0
# Test binding output

import nengo
import nengo.spa as spa
import numpy as np

dimensions = 32

vocab = spa.Vocabulary(dimensions)
model = spa.SPA(label='Play_w_input')


def my_output(t, x):
    # How similar is x to STOP?
    eat = np.dot(x, vocab.parse('STOP').v)

    return eat


def my_input():
    pass


with model:
    model.subgoal = spa.State(dimensions, vocab)
    model.food = spa.State(dimensions, vocab)
    model.food_percept = spa.State(dimensions,
                                   vocab,
                                   feedback=1,
                                   feedback_synapse=0.1)
    model.now_state = spa.State(dimensions,
예제 #24
0
# The book describes that the results of the model can be seen through the
# visualizer in Nengo 1.4 GUI which has a "Utility" box and the "Rules" box.
# Note that the bottom-right graph shows the same information as seen in the
# "Rules" box and top-right graph shows the same information as seen in the
# "Utility" box.

#Setup the environment
import nengo
from nengo import spa  #import spa related packages

#Number of dimensions for the Semantic Pointers
dimensions = 16

#Make a model with the SPA network
model = spa.SPA(label='Sequence')
with model:
    #Creating a working memory/cortical element
    model.state = spa.State(dimensions=dimensions,
                            feedback=1,
                            feedback_synapse=0.01)

    #Specifying the action mappings (rules) for BG and Thal
    actions = spa.Actions('dot(state, A) --> state = B',
                          'dot(state, B) --> state = C',
                          'dot(state, C) --> state = D',
                          'dot(state, D) --> state = E',
                          'dot(state, E) --> state = A')

    #Creating the BG and Thalamus components that confirm to the specified rules
    model.BG = spa.BasalGanglia(actions=actions)
def create_model(seed=None):

    #create vocabulary to show representations in gui
    if nengo_gui_on:
        vocab_angles = spa.Vocabulary(D)
        for name in [0, 3, 7, 12, 18, 25, 33, 42]:
            #vocab_angles.add('D' + str(name), np.linalg.norm(compressed_im_cued[name+90])) #take mean across phases
            v = compressed_im_cued[name + 90]
            nrm = np.linalg.norm(v)
            if nrm > 0:
                v /= nrm
            vocab_angles.add('D' + str(name), v)  #take mean across phases

        v = np.dot(imagearr[-1, :] / 50, U_cued[:, :D])
        nrm = np.linalg.norm(v)
        if nrm > 0:
            v /= nrm
        vocab_angles.add('Impulse', v)

    #model = nengo.Network(seed=seed)
    model = spa.SPA(seed=seed)
    with model:

        #input nodes
        if not batch_processing:
            model.inputNode_cued = nengo.Node(input_func_cued,
                                              label='input_cued')
            model.reactivate = nengo.Node(reactivate_func, label='reactivate')
        elif batch_processing:
            model.inputNode_cued = nengo.Node(np.zeros(128 * 128))
            model.reactivate = nengo.Node(np.zeros(Nm))

        #eye ensemble
        eye_cued = nengo.Ensemble(Ns,
                                  D,
                                  encoders=e_cued,
                                  intercepts=Uniform(0.01, 0.1),
                                  radius=1,
                                  label='eye_cued',
                                  seed=seed)
        nengo.Connection(model.inputNode_cued,
                         eye_cued,
                         transform=U_cued[:, :D].T)

        #sensory ensemble
        sensory_cued = nengo.Ensemble(Ns,
                                      D,
                                      encoders=e_cued,
                                      intercepts=Uniform(0.01, .1),
                                      radius=1,
                                      label='sensory_cued')

        conn_cued = nengo.Connection(
            eye_cued, sensory_cued,
            function=lambda x: x)  #default: identity function

        if nengo_gui_on:
            with nengo.Simulator(network=model,
                                 progress_bar=False) as sim_cued:
                weights_cued = sim_cued.data[conn_cued].weights

            model.connections.remove(conn_cued)

        elif not (nengo_gui_on):
            with nengo_dl.Simulator(
                    network=model, progress_bar=False,
                    device=device) as sim_cued:  #, device=device
                weights_cued = sim_cued.data[conn_cued].weights

            model.connections.remove(conn_cued)

        Ncluster = 1  # number of neurons per cluster
        clusters = np.arange(0, Ns, Ncluster)

        #parameters for gamma distribution where k=shape, theta=scale and mean=k*theta -> theta=mean/k
        # wanted distribution: lowest value 51ms and mean value 141 ms (Lamme & Roelfsema (2000))

        k, mean = 2, 0.090  #(mean_synapse - lowest_synapse) #subtract lowest synapse from mean so distribution starts at 0
        theta = mean / k
        shift = 0.051

        weights_trans = 1.50
        rec_trans = 0.30

        noise_sd = 0.010

        if uncued:
            # Build second simulation to fetch weights before making the large amount of connections between eye_cued and sensory_cued, place all
            # of uncued model inside this if statement to keep code close together
            if not batch_processing:
                model.inputNode_uncued = nengo.Node(input_func_uncued,
                                                    label='input_first')

            elif batch_processing:
                model.inputNode_uncued = nengo.Node(np.zeros(128 * 128))

            eye_uncued = nengo.Ensemble(Ns,
                                        D,
                                        encoders=e_uncued,
                                        intercepts=Uniform(0.01, 0.1),
                                        radius=1,
                                        label='eye_uncued',
                                        seed=seed)
            nengo.Connection(model.inputNode_uncued,
                             eye_uncued,
                             transform=U_uncued[:, :D].T)

            sensory_uncued = nengo.Ensemble(Ns,
                                            D,
                                            encoders=e_uncued,
                                            intercepts=Uniform(0.01, .1),
                                            radius=1,
                                            label='sensory_uncued')

            conn_uncued = nengo.Connection(
                eye_uncued, sensory_uncued,
                function=lambda x: x)  #default: identity function

            if nengo_gui_on:
                with nengo.Simulator(network=model,
                                     progress_bar=False) as sim_uncued:
                    weights_uncued = sim_uncued.data[conn_uncued].weights

                model.connections.remove(conn_uncued)

            elif not (nengo_gui_on):
                with nengo_dl.Simulator(
                        network=model, progress_bar=False,
                        device=device) as sim_uncued:  #device=device
                    weights_uncued = sim_uncued.data[conn_uncued].weights

                model.connections.remove(conn_uncued)

            synapse_uncued = np.random.gamma(k, theta, clusters.size) + shift

            for i in range(clusters.size):

                begin = clusters[i]
                end = (begin + Ncluster)

                nengo.Connection(eye_uncued.neurons[begin:end],
                                 sensory_uncued,
                                 transform=weights_uncued[:, begin:end] *
                                 weights_trans,
                                 synapse=synapse_uncued[i])

            nengo.Connection(sensory_uncued,
                             eye_uncued,
                             transform=rec_trans,
                             solver=nengo.solvers.LstsqL2(weights=True),
                             synapse=0.200)

            noise_uncued = nengo.processes.WhiteNoise(
                dist=Gaussian(0, noise_sd))

            memory_uncued = nengo.Ensemble(Nm,
                                           D,
                                           neuron_type=stpLIF(),
                                           intercepts=Uniform(0.01, .1),
                                           noise=noise_uncued,
                                           radius=1,
                                           label='memory_uncued')
            nengo.Connection(sensory_uncued, memory_uncued, transform=0.1)

            nengo.Connection(memory_uncued,
                             memory_uncued,
                             transform=1,
                             learning_rule_type=STP(),
                             solver=nengo.solvers.LstsqL2(weights=True))

            comparison_uncued = nengo.Ensemble(Nd,
                                               dimensions=4,
                                               radius=math.sqrt(2),
                                               intercepts=Uniform(.01, 1),
                                               label='comparison_uncued')

            nengo.Connection(memory_uncued,
                             comparison_uncued[2:],
                             eval_points=compressed_im_uncued[0:-1],
                             function=sincos.T)
            nengo.Connection(sensory_uncued,
                             comparison_uncued[:2],
                             eval_points=compressed_im_uncued[0:-1],
                             function=sincos.T)

            decision_uncued = nengo.Ensemble(n_neurons=Nd,
                                             dimensions=1,
                                             radius=45,
                                             label='decision_uncued')
            nengo.Connection(comparison_uncued,
                             decision_uncued,
                             eval_points=ep,
                             scale_eval_points=False,
                             function=arctan_func)

        ### cued ###

        synapse_cued = np.random.gamma(k, theta, clusters.size) + shift

        for i in range(clusters.size):

            begin = clusters[i]
            end = (begin + Ncluster)

            nengo.Connection(eye_cued.neurons[begin:end],
                             sensory_cued,
                             transform=weights_cued[:, begin:end] *
                             weights_trans,
                             synapse=synapse_cued[i])

        nengo.Connection(sensory_cued,
                         eye_cued,
                         transform=rec_trans,
                         solver=nengo.solvers.LstsqL2(weights=True),
                         synapse=0.200)

        #memory ensemble
        noise_cued = nengo.processes.WhiteNoise(dist=Gaussian(0, noise_sd))

        memory_cued = nengo.Ensemble(Nm,
                                     D,
                                     neuron_type=stpLIF(),
                                     intercepts=Uniform(0.01, .1),
                                     noise=noise_cued,
                                     radius=1,
                                     label='memory_cued')
        nengo.Connection(sensory_cued, memory_cued, transform=0.1)
        nengo.Connection(model.reactivate,
                         memory_cued.neurons)  #potential reactivation

        #recurrent STSP connection
        nengo.Connection(memory_cued,
                         memory_cued,
                         transform=1,
                         learning_rule_type=STP(),
                         solver=nengo.solvers.LstsqL2(weights=True))

        #comparison represents sin, cosine of theta of both sensory and memory ensemble
        comparison_cued = nengo.Ensemble(Nc,
                                         dimensions=4,
                                         radius=math.sqrt(2),
                                         intercepts=Uniform(.01, 1),
                                         label='comparison_cued')
        nengo.Connection(sensory_cued,
                         comparison_cued[:2],
                         eval_points=compressed_im_cued[0:-1],
                         function=sincos.T)
        nengo.Connection(memory_cued,
                         comparison_cued[2:],
                         eval_points=compressed_im_cued[0:-1],
                         function=sincos.T)

        #decision represents the difference in theta decoded from the sensory and memory ensembles
        decision_cued = nengo.Ensemble(n_neurons=Nd,
                                       dimensions=1,
                                       radius=45,
                                       label='decision_cued')
        nengo.Connection(comparison_cued,
                         decision_cued,
                         eval_points=ep,
                         scale_eval_points=False,
                         function=arctan_func)

        #decode for gui
        if nengo_gui_on:
            model.sensory_decode = spa.State(D,
                                             vocab=vocab_angles,
                                             subdimensions=12,
                                             label='sensory_decode')
            for ens in model.sensory_decode.all_ensembles:
                ens.neuron_type = nengo.Direct()
            nengo.Connection(sensory_cued,
                             model.sensory_decode.input,
                             synapse=None)

            model.memory_decode = spa.State(D,
                                            vocab=vocab_angles,
                                            subdimensions=12,
                                            label='memory_decode')
            for ens in model.memory_decode.all_ensembles:
                ens.neuron_type = nengo.Direct()
            nengo.Connection(memory_cued,
                             model.memory_decode.input,
                             synapse=None)

        #probes
        if not (nengo_gui_on):
            if store_representations:  #sim 1 trials 1-100
                model.p_mem_cued = nengo.Probe(memory_cued, synapse=0.05)
                model.p_mem_uncued = nengo.Probe(memory_uncued, synapse=0.05)

            if store_spikes_and_resources:  #sim 1 trial 1
                model.p_spikes_mem_cued = nengo.Probe(memory_cued.neurons,
                                                      'spikes')
                model.p_res_cued = nengo.Probe(memory_cued.neurons,
                                               'resources')
                model.p_cal_cued = nengo.Probe(memory_cued.neurons, 'calcium')

                model.p_spikes_mem_uncued = nengo.Probe(
                    memory_uncued.neurons, 'spikes')
                model.p_res_uncued = nengo.Probe(memory_uncued.neurons,
                                                 'resources')
                model.p_cal_uncued = nengo.Probe(memory_uncued.neurons,
                                                 'calcium')

            if store_decisions:  #sim 2
                model.p_dec_cued = nengo.Probe(decision_cued, synapse=0.01)

            if store_memory:
                model.p_mem_cued_raw = nengo.Probe(memory_cued.neurons,
                                                   'output',
                                                   synapse=0.05)
                model.p_mem_uncued_raw = nengo.Probe(memory_uncued.neurons,
                                                     'output',
                                                     synapse=0.05)

    return model
예제 #26
0
    def __init__(self,
                 mapping,
                 threshold=0.2,
                 learning_rate=1e-4,
                 DimVocab=256,
                 subdimensions=32,
                 learned_function_scale=2.0):
        model = spa.SPA()
        self.model = model
        self.mapping = mapping
        #self.vocab_category = spa.Vocabulary(D_category)
        #self.vocab_items = spa.Vocabulary(D_items)
        self.VocabUnified = spa.Vocabulary(DimVocab)
        for k in sorted(
                mapping.keys()):  #allocating verctors for categories name
            self.VocabUnified.parse(k)
            for v in mapping[k]:  # allocating vectors to the items
                self.VocabUnified.parse(v)

        with model:
            model.cue = spa.State(DimVocab,
                                  vocab=self.VocabUnified,
                                  subdimensions=subdimensions)
            model.target = spa.State(DimVocab,
                                     vocab=self.VocabUnified,
                                     subdimensions=subdimensions)
            c = []
            n_sub = len(model.cue.state_ensembles.ea_ensembles)
            for i in range(n_sub):
                cues = []
                targets = []
                for cue, vals in mapping.items():
                    for val in vals:
                        cues.append(
                            self.VocabUnified.parse(cue).v[i *
                                                           subdimensions:(i +
                                                                          1) *
                                                           subdimensions])
                        targets.append(
                            self.VocabUnified.parse(val).v / n_sub *
                            learned_function_scale)
                        cues.append(
                            self.VocabUnified.parse(val).v[i *
                                                           subdimensions:(i +
                                                                          1) *
                                                           subdimensions])
                        targets.append(
                            self.VocabUnified.parse(cue).v / n_sub *
                            learned_function_scale)

                cc = nengo.Connection(
                    model.cue.all_ensembles[i],
                    model.target.input,
                    learning_rule_type=nengo.PES(learning_rate=learning_rate),
                    **nengo.utils.connection.target_function(cues, targets))
                cc.eval_points = cues
                cc.function = targets
                c.append(cc)

                print i

            #model.error = spa.State(D_items, vocab=self.vocab_items)
            #nengo.Connection(model.items.output, model.error.input)
            #nengo.Connection(model.error.output, c.learning_rule)

            #I am not sure how this implements the learning
            model.error = spa.State(DimVocab,
                                    vocab=self.VocabUnified,
                                    subdimensions=subdimensions)
            nengo.Connection(model.target.output, model.error.input)
            print 'the loop ended, right?'
            for cc in c:
                nengo.Connection(model.error.output, cc.learning_rule)

            self.stim_cue_value = np.zeros(DimVocab)  #?
            self.stim_cue = nengo.Node(self.stim_cue_fun)  #?
            nengo.Connection(self.stim_cue, model.cue.input, synapse=None)

            self.stim_correct_value = np.zeros(DimVocab)
            self.stim_correct = nengo.Node(self.stim_correct)
            nengo.Connection(self.stim_correct,
                             model.error.input,
                             synapse=None,
                             transform=-1)

            self.stim_stoplearn_value = np.zeros(1)
            self.stim_stoplearn = nengo.Node(self.stim_stoplearn)
            for ens in model.error.all_ensembles:
                nengo.Connection(self.stim_stoplearn,
                                 ens.neurons,
                                 synapse=None,
                                 transform=-10 * np.ones((ens.n_neurons, 1)))

            self.stim_justmemorize_value = np.zeros(1)
            self.stim_justmemorize = nengo.Node(self.stim_justmemorize)
            for ens in model.target.all_ensembles:  #?
                nengo.Connection(self.stim_justmemorize,
                                 ens.neurons,
                                 synapse=None,
                                 transform=-10 * np.ones((ens.n_neurons, 1)))

            self.probe_target = nengo.Probe(model.target.output, synapse=0.01)

        if __name__ != '__builtin__':
            self.sim = nengo.Simulator(self.model)
예제 #27
0
import nengo.spa as spa
from nengo.spa import Vocabulary
import numpy as np

D = 64  # the dimensionality of the vectors
rng = np.random.RandomState(15)
vocab = Vocabulary(dimensions=D, rng=rng, max_similarity=0.1)

#Adding semantic pointers to the vocabulary
CIRCLE=vocab.parse('CIRCLE')
BLUE=vocab.parse('BLUE')
RED=vocab.parse('RED')
SQUARE=vocab.parse('SQUARE')
ZERO=vocab.add('ZERO', [0]*D)

model = spa.SPA(label="Question Answering with Control", vocabs=[vocab])
with model:
    
    model.visual = spa.State(D)
    model.motor = spa.State(D)
    model.memory = spa.State(D, feedback=1, feedback_synapse=0.1)

    actions = spa.Actions(
        'dot(visual, STATEMENT) --> memory=visual',
        'dot(visual, QUESTION) --> motor = memory * ~visual'
        )
 
    model.bg = spa.BasalGanglia(actions)
    model.thalamus = spa.Thalamus(model.bg)

    #function for providing visual input
예제 #28
0
def generate(input_signal, alpha=1000.0):
    beta = alpha / 4.0

    # generate the Function Space
    forces, _, goals = forcing_functions.load_folder(
        'models/locomotion_trajectories',
        rhythmic=True,
        alpha=alpha,
        beta=beta)
    # make an array out of all the possible functions we want to represent
    force_space = np.vstack(forces)
    # use this array as our space to perform svd over
    fs = nengo.FunctionSpace(space=force_space, n_basis=10)

    # store the weights for each movement
    weights_a = []  # ankle
    weights_k = []  # knee
    weights_h = []  # hip
    # NOTE: things are added to weights based on the order files are read
    for ii in range(int(len(goals) / 6)):
        forces = force_space[ii * 6:ii * 6 + 6]
        # load up the forces to be output by the forcing function
        # calculate the corresponding weights over the basis functions
        weights_a.append(
            np.hstack([
                np.dot(fs.basis.T, forces[0]),  # ankle 1
                np.dot(fs.basis.T, forces[1])
            ]))  # ankle 2
        weights_h.append(
            np.hstack([
                np.dot(fs.basis.T, forces[2]),  # hip 1
                np.dot(fs.basis.T, forces[3])
            ]))  # hip 2
        weights_k.append(
            np.hstack([
                np.dot(fs.basis.T, forces[4]),  # knee 1
                np.dot(fs.basis.T, forces[5])
            ]))  # knee 2

    # Create our vocabularies
    sps_labels = ['GALLOP', 'RUNNING', 'WALKING']
    rng = np.random.RandomState(0)
    dimensions = 50  # some arbitrary number
    vocab_input = Vocabulary(dimensions=dimensions, rng=rng)
    vocab_dmp_weights_a = Vocabulary(dimensions=fs.n_basis * 2, rng=rng)
    vocab_dmp_weights_k = Vocabulary(dimensions=fs.n_basis * 2, rng=rng)
    vocab_dmp_weights_h = Vocabulary(dimensions=fs.n_basis * 2, rng=rng)

    for ii, (label, wa, wk,
             wh) in enumerate(zip(sps_labels, weights_a, weights_k,
                                  weights_h)):
        vocab_input.parse(label)  # randomly generate input vector
        vocab_dmp_weights_a.add(label, wa)
        vocab_dmp_weights_k.add(label, wk)
        vocab_dmp_weights_h.add(label, wh)

    net = spa.SPA()
    net.config[nengo.Ensemble].neuron_type = nengo.LIFRate()
    with net:

        config = nengo.Config(nengo.Ensemble)
        config[nengo.Ensemble].neuron_type = nengo.Direct()
        with config:
            # --------------------- Inputs --------------------------

            # def input_func(t):
            #     return vocab_input.parse(input_signal).v
            # net.input = nengo.Node(input_func)
            net.input = spa.State(dimensions,
                                  subdimensions=10,
                                  vocab=vocab_input)

            # ------------------- Point Attractors --------------------

            zero = nengo.Node([0])
            net.a1 = point_attractor.generate(n_neurons=1000,
                                              alpha=alpha,
                                              beta=beta)
            nengo.Connection(zero, net.a1.input[0], synapse=None)
            net.a2 = point_attractor.generate(n_neurons=1000,
                                              alpha=alpha,
                                              beta=beta)
            nengo.Connection(zero, net.a1.input[0], synapse=None)

            net.k1 = point_attractor.generate(n_neurons=1000,
                                              alpha=alpha,
                                              beta=beta)
            nengo.Connection(zero, net.k1.input[0], synapse=None)
            net.k2 = point_attractor.generate(n_neurons=1000,
                                              alpha=alpha,
                                              beta=beta)
            nengo.Connection(zero, net.k2.input[0], synapse=None)

            net.h1 = point_attractor.generate(n_neurons=1000,
                                              alpha=alpha,
                                              beta=beta)
            nengo.Connection(zero, net.h1.input[0], synapse=None)
            net.h2 = point_attractor.generate(n_neurons=1000,
                                              alpha=alpha,
                                              beta=beta)
            nengo.Connection(zero, net.h2.input[0], synapse=None)

        # -------------------- Oscillators ----------------------

        kick = nengo.Node(nengo.utils.functions.piecewise({
            0: 1,
            .05: 0
        }),
                          label='kick')

        osc = oscillator.generate(net, n_neurons=3000, speed=.01)
        osc.label = 'oscillator'
        nengo.Connection(kick, osc[0])

        # ------------------- Forcing Functions --------------------

        with config:
            net.assoc_mem_a = spa.AssociativeMemory(
                input_vocab=vocab_input,
                output_vocab=vocab_dmp_weights_a,
                wta_output=False)
            nengo.Connection(net.input.output, net.assoc_mem_a.input)

            net.assoc_mem_k = spa.AssociativeMemory(
                input_vocab=vocab_input,
                output_vocab=vocab_dmp_weights_k,
                wta_output=False)
            nengo.Connection(net.input.output, net.assoc_mem_k.input)

            net.assoc_mem_h = spa.AssociativeMemory(
                input_vocab=vocab_input,
                output_vocab=vocab_dmp_weights_h,
                wta_output=False)
            nengo.Connection(net.input.output, net.assoc_mem_h.input)

            # -------------------- Product for decoding -----------------------

            product_a1 = nengo.Network('Product A1')
            nengo.networks.Product(n_neurons=1000,
                                   dimensions=fs.n_basis,
                                   net=product_a1)
            product_a2 = nengo.Network('Product A2')
            nengo.networks.Product(n_neurons=1000,
                                   dimensions=fs.n_basis,
                                   net=product_a2)

            product_h1 = nengo.Network('Product H1')
            nengo.networks.Product(n_neurons=1000,
                                   dimensions=fs.n_basis,
                                   net=product_h1)
            product_h2 = nengo.Network('Product H2')
            nengo.networks.Product(n_neurons=1000,
                                   dimensions=fs.n_basis,
                                   net=product_h2)

            product_k1 = nengo.Network('Product K1')
            nengo.networks.Product(n_neurons=1000,
                                   dimensions=fs.n_basis,
                                   net=product_k1)
            product_k2 = nengo.Network('Product K2')
            nengo.networks.Product(n_neurons=1000,
                                   dimensions=fs.n_basis,
                                   net=product_k2)

            # get the largest basis function value for normalization
            max_basis = np.max(fs.basis * fs.scale)
            domain = np.linspace(-np.pi, np.pi, fs.basis.shape[0])
            domain_cossin = np.array([np.cos(domain), np.sin(domain)]).T
            for ff, product in zip([
                    net.assoc_mem_a.output[:fs.n_basis],
                    net.assoc_mem_a.output[fs.n_basis:],
                    net.assoc_mem_k.output[:fs.n_basis],
                    net.assoc_mem_k.output[fs.n_basis:],
                    net.assoc_mem_h.output[:fs.n_basis],
                    net.assoc_mem_h.output[fs.n_basis:]
            ], [
                    product_a1, product_a2, product_k1, product_k2, product_h1,
                    product_h2
            ]):
                for ii in range(fs.n_basis):
                    # find the value of a basis function at a value of (x, y)
                    target_function = nengo.utils.connection.target_function(
                        domain_cossin, fs.basis[:, ii] * fs.scale / max_basis)
                    nengo.Connection(osc, product.B[ii], **target_function)
                    # multiply the value of each basis function at x by its weight
                nengo.Connection(ff, product.A)

            nengo.Connection(product_a1.output,
                             net.a1.input[1],
                             transform=np.ones((1, fs.n_basis)) * max_basis)
            nengo.Connection(product_a2.output,
                             net.a2.input[1],
                             transform=np.ones((1, fs.n_basis)) * max_basis)

            nengo.Connection(product_k1.output,
                             net.k1.input[1],
                             transform=np.ones((1, fs.n_basis)) * max_basis)
            nengo.Connection(product_k2.output,
                             net.k2.input[1],
                             transform=np.ones((1, fs.n_basis)) * max_basis)

            nengo.Connection(product_h1.output,
                             net.h1.input[1],
                             transform=np.ones((1, fs.n_basis)) * max_basis)
            nengo.Connection(product_h2.output,
                             net.h2.input[1],
                             transform=np.ones((1, fs.n_basis)) * max_basis)

            # -------------------- Output ------------------------------

            net.output = nengo.Node(size_in=6, label='output')
            nengo.Connection(net.a1.output, net.output[0], synapse=0.01)
            nengo.Connection(net.a2.output, net.output[1], synapse=0.01)
            nengo.Connection(net.k1.output, net.output[2], synapse=0.01)
            nengo.Connection(net.k2.output, net.output[3], synapse=0.01)
            nengo.Connection(net.h1.output, net.output[4], synapse=0.01)
            nengo.Connection(net.h2.output, net.output[5], synapse=0.01)

            # add in the goal offsets
            nengo.Connection(net.assoc_mem_a.output[[-2, -1]],
                             net.output[[0, 1]],
                             synapse=None)
            nengo.Connection(net.assoc_mem_k.output[[-2, -1]],
                             net.output[[2, 3]],
                             synapse=None)
            nengo.Connection(net.assoc_mem_h.output[[-2, -1]],
                             net.output[[4, 5]],
                             synapse=None)

            # create a node to give a plot of the represented function
            ff_plot_a = fs.make_plot_node(domain=domain,
                                          lines=2,
                                          ylim=[-1000000, 1000000])
            nengo.Connection(net.assoc_mem_a.output, ff_plot_a, synapse=0.1)

            ff_plot_k = fs.make_plot_node(domain=domain,
                                          lines=2,
                                          ylim=[-1000000, 1000000])
            nengo.Connection(net.assoc_mem_k.output, ff_plot_k, synapse=0.1)

            ff_plot_h = fs.make_plot_node(domain=domain,
                                          lines=2,
                                          ylim=[-1000000, 1000000])
            nengo.Connection(net.assoc_mem_h.output, ff_plot_h, synapse=0.1)

    return net
예제 #29
0
import nengo
import nengo.spa as spa
import numpy as np

D = 256  # options: 64, 128, 256, 384, 512

D_space = 256  # options: 64, 128, 256, 384, 512

vocab_space = spa.Vocabulary(D_space)

model = spa.SPA()
with model:

    model.rule = spa.State(D_space, vocab=vocab_space)

    model.objs = spa.State(D_space, feedback=1, vocab=vocab_space)

    model.status = spa.State(32)

    speed = 0.3
    separation = 0.3
    strength = 0.4

    model.subjx = spa.Compare(D_space)
    model.subjy = spa.Compare(D_space)
    model.objx = spa.Compare(D_space)
    model.objy = spa.Compare(D_space)

    for ens in model.all_ensembles:
        ens.neuron_type = nengo.Direct()
예제 #30
0
def create_model(seed=None,
                 memory_item_first=None,
                 probe_first=None,
                 memory_item_second=None,
                 probe_second=None,
                 Ns=None,
                 D=None,
                 Nm=None,
                 Nc=None,
                 Nd=None,
                 e_first=None,
                 U_first=None,
                 compressed_im_first=None,
                 e_second=None,
                 U_second=None,
                 compressed_im_second=None,
                 store_representations=None,
                 store_decisions=None,
                 store_spikes_and_resources=None):

    # global model

    #create vocabulary to show representations in gui
    # if nengo_gui_on:
    # vocab_angles = spa.Vocabulary(D)
    # for name in [0, 5, 10, 16, 24, 32, 40]:
    #     #vocab_angles.add('D' + str(name), np.linalg.norm(compressed_im_first[name+90])) #take mean across phases
    #     v = compressed_im_first[name+90]
    #     nrm = np.linalg.norm(v)
    #     if nrm > 0:
    #         v /= nrm
    #     vocab_angles.add('D' + str(name), v) #take mean across phases

    # v = np.dot(imagearr[-1,:]/50, U_first[:,:D])
    # nrm = np.linalg.norm(v)
    # if nrm > 0:
    #     v /= nrm
    # vocab_angles.add('Impulse', v)

    input_partial_first = partial(input_func_first,
                                  memory_item_first=memory_item_first,
                                  probe_first=probe_first)
    input_partial_second = partial(input_func_second,
                                   memory_item_second=memory_item_second,
                                   probe_second=probe_second)
    react_partial = partial(reactivate_func, Nm=Nm)
    #model = nengo.Network(seed=seed)
    model = spa.SPA(seed=seed)
    with model:

        #input nodes
        inputNode_first = nengo.Node(input_partial_first, label='input_first')

        #sensory ensemble
        sensory_first = nengo.Ensemble(Ns,
                                       D,
                                       encoders=e_first,
                                       intercepts=Uniform(0.01, .1),
                                       radius=1,
                                       label='sensory_first')
        nengo.Connection(inputNode_first,
                         sensory_first,
                         transform=U_first[:, :D].T)

        #memory ensemble
        memory_first = nengo.Ensemble(Nm,
                                      D,
                                      neuron_type=stpLIF(),
                                      intercepts=Uniform(0.01, .1),
                                      radius=1,
                                      label='memory_first')
        nengo.Connection(sensory_first, memory_first, transform=.1)  #.1)

        #recurrent STSP connection
        nengo.Connection(memory_first,
                         memory_first,
                         transform=1,
                         learning_rule_type=STP(),
                         solver=nengo.solvers.LstsqL2(weights=True))

        #comparison represents sin, cosine of theta of both sensory and memory ensemble
        comparison_first = nengo.Ensemble(Nc,
                                          dimensions=4,
                                          radius=math.sqrt(2),
                                          intercepts=Uniform(.01, 1),
                                          label='comparison_first')
        nengo.Connection(sensory_first,
                         comparison_first[:2],
                         eval_points=compressed_im_first[0:-1],
                         function=sincos.T)
        nengo.Connection(memory_first,
                         comparison_first[2:],
                         eval_points=compressed_im_first[0:-1],
                         function=sincos.T)

        #decision represents the difference in theta decoded from the sensory and memory ensembles
        decision_first = nengo.Ensemble(n_neurons=Nd,
                                        dimensions=1,
                                        radius=45,
                                        label='decision_first')
        nengo.Connection(comparison_first,
                         decision_first,
                         eval_points=ep,
                         scale_eval_points=False,
                         function=arctan_func)

        #same for secondary module
        inputNode_second = nengo.Node(input_partial_second,
                                      label='input_second')
        reactivate = nengo.Node(react_partial, label='reactivate')

        sensory_second = nengo.Ensemble(Ns,
                                        D,
                                        encoders=e_second,
                                        intercepts=Uniform(0.01, .1),
                                        radius=1,
                                        label='sensory_second')
        nengo.Connection(inputNode_second,
                         sensory_second,
                         transform=U_second[:, :D].T)

        memory_second = nengo.Ensemble(Nm,
                                       D,
                                       neuron_type=stpLIF(),
                                       intercepts=Uniform(0.01, .1),
                                       radius=1,
                                       label='memory_second')
        nengo.Connection(sensory_second, memory_second, transform=.1)
        nengo.Connection(reactivate,
                         memory_second.neurons)  #potential reactivation

        nengo.Connection(memory_second,
                         memory_second,
                         transform=1,
                         learning_rule_type=STP(),
                         solver=nengo.solvers.LstsqL2(weights=True))

        comparison_second = nengo.Ensemble(Nd,
                                           dimensions=4,
                                           radius=math.sqrt(2),
                                           intercepts=Uniform(.01, 1),
                                           label='comparison_second')

        nengo.Connection(memory_second,
                         comparison_second[2:],
                         eval_points=compressed_im_second[0:-1],
                         function=sincos.T)
        nengo.Connection(sensory_second,
                         comparison_second[:2],
                         eval_points=compressed_im_second[0:-1],
                         function=sincos.T)

        decision_second = nengo.Ensemble(n_neurons=Nd,
                                         dimensions=1,
                                         radius=45,
                                         label='decision_second')
        nengo.Connection(comparison_second,
                         decision_second,
                         eval_points=ep,
                         scale_eval_points=False,
                         function=arctan_func)

        # #decode for gui
        # if nengo_gui_on:
        #     model.sensory_decode = spa.State(D, vocab=vocab_angles, subdimensions=12, label='sensory_decode')
        #     for ens in model.sensory_decode.all_ensembles:
        #         ens.neuron_type = nengo.Direct()
        #     nengo.Connection(sensory_first, model.sensory_decode.input,synapse=None)

        #     model.memory_decode = spa.State(D, vocab=vocab_angles, subdimensions=12, label='memory_decode')
        #     for ens in model.memory_decode.all_ensembles:
        #         ens.neuron_type = nengo.Direct()
        #     nengo.Connection(memory_first, model.memory_decode.input,synapse=None)

        #probes
        if not (nengo_gui_on):
            if store_representations:  #sim 1 trials 1-100

                model.p_mem_first = nengo.Probe(memory_first, synapse=0.01)
                model.p_mem_second = nengo.Probe(memory_second, synapse=0.01)
                model.p_sens_first = nengo.Probe(sensory_first, synapse=0.01)
                model.p_sens_second = nengo.Probe(sensory_second, synapse=0.01)
            if store_spikes_and_resources:  #sim 1 trial 1
                model.p_spikes_mem_first = nengo.Probe(memory_first.neurons,
                                                       'spikes')
                model.p_res_first = nengo.Probe(memory_first.neurons,
                                                'resources')
                model.p_cal_first = nengo.Probe(memory_first.neurons,
                                                'calcium')

                model.p_spikes_mem_second = nengo.Probe(
                    memory_second.neurons, 'spikes')
                model.p_res_second = nengo.Probe(memory_second.neurons,
                                                 'resources')
                model.p_cal_second = nengo.Probe(memory_second.neurons,
                                                 'calcium')

            if store_decisions:  #sim 2
                model.p_dec_first = nengo.Probe(decision_first, synapse=0.01)
                model.p_dec_second = nengo.Probe(decision_second, synapse=0.01)
        return model