예제 #1
0
파일: cache.py 프로젝트: utsavakru/nengo
 def _load_index_file(self):
     with open(self.index_path, 'rb') as f:
         self.version = pickle.load(f)
         if isinstance(self.version, tuple):
             if (self.version[0] > self.VERSION
                     or self.version[1] > pickle.HIGHEST_PROTOCOL):
                 raise CacheIOError("Unsupported cache index file format.")
             self._index = pickle.load(f)
         else:
             self._index = self.version
             self.version = self._get_legacy_version()
     assert isinstance(self.version, tuple)
     assert isinstance(self._index, dict)
예제 #2
0
파일: data.py 프로젝트: fmirus/nengo_extras
def load_mnist(filepath=None, validation=False):
    """Load the MNIST dataset.

    Parameters
    ----------
    filepath : str (optional, Default: None)
        Path to the previously downloaded 'mnist.pkl.gz' file.
        If `None`, the file will be downloaded to the current directory.
    validation : boolean (optional, Default: False)
        Whether to provide the validation data as a separate set (True),
        or combine it into the training data (False).

    Returns
    -------
    train_set : (n_train, n_pixels) ndarray, (n_train,) ndarray
        A tuple of the training image array and label array.
    validation_set : (n_valid, n_pixels) ndarray, (n_valid,) ndarray
        A tuple of the validation image array and label array (if `validation`)
    test_set : (n_test, n_pixels) ndarray, (n_test,) ndarray
        A tuple of the testing image array and label array.
    """
    if filepath is None:
        filepath = get_mnist_pkl_gz()

    filepath = os.path.expanduser(filepath)
    with gzip.open(filepath, 'rb') as f:
        train_set, valid_set, test_set = pickle.load(f)

    if validation:
        return train_set, valid_set, test_set
    else:  # combine valid into train
        train_set = (np.vstack((train_set[0], valid_set[0])),
                     np.hstack((train_set[1], valid_set[1])))
        return train_set, test_set
예제 #3
0
 def _load_index(self):
     assert self._lock.acquired
     try:
         with open(self.filename, 'rb') as f:
             return pickle.load(f)
     except IOError as err:
         if err.errno == errno.ENOENT:
             return {}
         else:
             raise
예제 #4
0
파일: data.py 프로젝트: fmirus/nengo_extras
def unpickle_tarfile(tar, name):
    tarextract = tar.extractfile(name)
    return pickle.load(tarextract)
예제 #5
0
def pickle_load_bytes(file, *args, **kwargs):
    if not PY2:
        kwargs.setdefault('encoding', 'bytes')
    return pickle.load(file, *args, **kwargs)
예제 #6
0
def pickle_load(file, *args, **kwargs):
    if not PY2:
        kwargs.setdefault('encoding', 'latin1')
    return pickle.load(file, *args, **kwargs)
예제 #7
0
def load_model_pickle(loadfile):
    loadfile = os.path.expanduser(loadfile)
    with open(loadfile, 'rb') as f:
        return pickle.load(f)