def _load_index_file(self): with open(self.index_path, 'rb') as f: self.version = pickle.load(f) if isinstance(self.version, tuple): if (self.version[0] > self.VERSION or self.version[1] > pickle.HIGHEST_PROTOCOL): raise CacheIOError("Unsupported cache index file format.") self._index = pickle.load(f) else: self._index = self.version self.version = self._get_legacy_version() assert isinstance(self.version, tuple) assert isinstance(self._index, dict)
def load_mnist(filepath=None, validation=False): """Load the MNIST dataset. Parameters ---------- filepath : str (optional, Default: None) Path to the previously downloaded 'mnist.pkl.gz' file. If `None`, the file will be downloaded to the current directory. validation : boolean (optional, Default: False) Whether to provide the validation data as a separate set (True), or combine it into the training data (False). Returns ------- train_set : (n_train, n_pixels) ndarray, (n_train,) ndarray A tuple of the training image array and label array. validation_set : (n_valid, n_pixels) ndarray, (n_valid,) ndarray A tuple of the validation image array and label array (if `validation`) test_set : (n_test, n_pixels) ndarray, (n_test,) ndarray A tuple of the testing image array and label array. """ if filepath is None: filepath = get_mnist_pkl_gz() filepath = os.path.expanduser(filepath) with gzip.open(filepath, 'rb') as f: train_set, valid_set, test_set = pickle.load(f) if validation: return train_set, valid_set, test_set else: # combine valid into train train_set = (np.vstack((train_set[0], valid_set[0])), np.hstack((train_set[1], valid_set[1]))) return train_set, test_set
def _load_index(self): assert self._lock.acquired try: with open(self.filename, 'rb') as f: return pickle.load(f) except IOError as err: if err.errno == errno.ENOENT: return {} else: raise
def unpickle_tarfile(tar, name): tarextract = tar.extractfile(name) return pickle.load(tarextract)
def pickle_load_bytes(file, *args, **kwargs): if not PY2: kwargs.setdefault('encoding', 'bytes') return pickle.load(file, *args, **kwargs)
def pickle_load(file, *args, **kwargs): if not PY2: kwargs.setdefault('encoding', 'latin1') return pickle.load(file, *args, **kwargs)
def load_model_pickle(loadfile): loadfile = os.path.expanduser(loadfile) with open(loadfile, 'rb') as f: return pickle.load(f)