예제 #1
0
def test_linear_network(Simulator, plt, seed, rng, neuron_type, atol, atol_x):
    n_neurons = 500
    dt = 0.001
    T = 1.0

    sys = Lowpass(0.1)
    scale_input = 2.0

    synapse = 0.02
    tau_probe = 0.005

    with Network(seed=seed) as model:
        stim = nengo.Node(
            output=nengo.processes.WhiteSignal(T, high=10, seed=seed))
        subnet = LinearNetwork(sys,
                               n_neurons_per_ensemble=n_neurons,
                               synapse=synapse,
                               input_synapse=synapse,
                               dt=dt,
                               neuron_type=neuron_type)
        nengo.Connection(stim,
                         subnet.input,
                         synapse=None,
                         transform=scale_input)

        assert subnet.synapse == subnet.input_synapse
        assert subnet.output_synapse is None

        p_input = nengo.Probe(subnet.input, synapse=tau_probe)
        p_x = nengo.Probe(subnet.state.output, synapse=tau_probe)
        p_output = nengo.Probe(subnet.output, synapse=tau_probe)

    with Simulator(model, dt=dt) as sim:
        sim.run(T)

    ideal_output = shift(sys.filt(sim.data[p_input]))
    ideal_x = shift(subnet.realization.X.filt(sim.data[p_input]))

    plt.plot(sim.trange(), sim.data[p_input], label="Input", alpha=0.5)
    plt.plot(sim.trange(), sim.data[p_output], label="Actual y", alpha=0.5)
    plt.plot(sim.trange(),
             ideal_output,
             label="Expected y",
             alpha=0.5,
             linestyle='--')
    plt.plot(sim.trange(), sim.data[p_x], label="Actual x", alpha=0.5)
    plt.plot(sim.trange(),
             ideal_x,
             label="Expected x",
             alpha=0.5,
             linestyle='--')
    plt.legend()

    assert nrmse(sim.data[p_output], ideal_output) < atol
    assert nrmse(sim.data[p_x].squeeze(), ideal_x.squeeze()) < atol_x
예제 #2
0
def test_sim_new_synapse(Simulator):
    # Create a new synapse object and simulate it
    synapse = Lowpass(0.1) - Lowpass(0.01)
    with Network() as model:
        stim = nengo.Node(output=np.sin)
        x = nengo.Node(size_in=1)
        nengo.Connection(stim, x, synapse=synapse)
        p_stim = nengo.Probe(stim, synapse=None)
        p_x = nengo.Probe(x, synapse=None)

    with Simulator(model) as sim:
        sim.run(0.1)

    assert np.allclose(shift(synapse.filt(sim.data[p_stim])),
                       sim.data[p_x])
예제 #3
0
파일: dn.py 프로젝트: goodluckcjj/phd
    def do_trial(name, seed, length=2000, dt=0.001, tau_probe=0.02,
                 sanity=False, **kwargs):
        # Note: depends on the globals, (factory, C, model, u, p_u, P, sys)

        process = nengo.processes.WhiteSignal(
            period=length*dt, rms=power, high=freq, y0=0, seed=seed)

        test_u = process.run_steps(length, dt=dt)
        x_ideal = sys.X.filt(test_u, dt=dt)

        if sanity:
            analyze("ideal-%s" % name, 
                    t=process.ntrange(length, dt=dt),
                    u=test_u,
                    x_hat=x_ideal,
                    x_ideal=x_ideal,
                    C=C,
                    theta=theta,
                    dump_file=False,
                    do_plot=False)
            
        u.output = process

        with factory(network=model, dt=dt) as sim:
            sim.run(length*dt)
            if post_fixture:
                post_fixture(sim)

        assert np.allclose(test_u, np.asarray(sim.data[p_u]))

        # Use discrete principle 3, offline, to get x_hat
        # from the unfiltered spikes representing x.
        # This is analagous to probing the PSC, pre-encoding.
        syn_probe = Lowpass(tau_probe)
        map_out = ss2sim(sys, synapse=syn_probe, dt=dt)
        x_raw = np.asarray([sim.data[p] for p in P]).squeeze()
        f = map_out.A.dot(x_raw) + map_out.B.dot(test_u.T)
        x_hat = syn_probe.filt(f, axis=1, dt=dt).T

        return analyze(
            name=name, t=sim.trange(), u=test_u,
            x_hat=x_hat, x_ideal=x_ideal, C=C,
            theta=theta, **kwargs)
예제 #4
0
def test_impulse():
    dt = 0.001
    tau = 0.005
    length = 500

    delta = np.zeros(length)
    delta[0] = 1. / dt

    sys = Lowpass(tau)
    response = sys.impulse(length, dt)
    assert not np.allclose(response[0], 0)

    # should give the same result as using filt
    assert np.allclose(response, sys.filt(delta, dt))

    # and should default to the same dt
    assert sys.default_dt == dt
    assert np.allclose(response, sys.impulse(length))

    # should also accept discrete systems
    dss = cont2discrete(sys, dt=dt)
    assert not dss.analog
    assert np.allclose(response, dss.impulse(length) / dt)
    assert np.allclose(response, dss.impulse(length, dt=dt))