def test_xcov_derivative_cc2tensor(): from neon.backends.cc2 import GPU, GPUTensor be = GPU(rng_seed=0) np.random.seed(0) n = 10 k = 8 (k1, k2) = (3, 5) a = np.array(np.random.randn(k, n), dtype='float32', order='C') s = np.zeros_like(a) acc = xcc(a[:k1], a[k1:]) # k1 x k2 c1 = a[k1:] - a[k1:].mean(1, keepdims=True) # k2 x n c2 = a[:k1] - a[:k1].mean(1, keepdims=True) # k1 x n s[:k1] = acc.dot(c1) / n s[k1:] = acc.T.dot(c2) / n outputs = GPUTensor(a.copy()) tempbuf1 = be.empty((k1, n)) tempbuf2 = be.empty((k2, n)) tempbuf3 = be.empty((k1, k2)) tempbuf4 = be.empty(outputs.shape) temp = [tempbuf1, tempbuf2, tempbuf3, tempbuf4] my_result = xcov_cost_derivative(be, outputs, [], temp, k1) expected_result = GPUTensor(s) assert_tensor_near_equal(expected_result, my_result)
def test_xcov_derivative_cc2tensor(): from neon.backends.cc2 import GPU, GPUTensor be = GPU(rng_seed=0) np.random.seed(0) n = 10 k = 8 (k1, k2) = (3, 5) a = np.array(np.random.randn(k, n), dtype='float32', order='C') s = np.zeros_like(a) acc = xcc(a[:k1], a[k1:]) # k1 x k2 c1 = a[k1:] - a[k1:].mean(1, keepdims=True) # k2 x n c2 = a[:k1] - a[:k1].mean(1, keepdims=True) # k1 x n s[:k1] = acc.dot(c1)/n s[k1:] = acc.T.dot(c2)/n outputs = GPUTensor(a.copy()) tempbuf1 = be.empty((k1, n)) tempbuf2 = be.empty((k2, n)) tempbuf3 = be.empty((k1, k2)) tempbuf4 = be.empty(outputs.shape) temp = [tempbuf1, tempbuf2, tempbuf3, tempbuf4] my_result = xcov_cost_derivative(be, outputs, [], temp, k1) expected_result = GPUTensor(s) assert_tensor_near_equal(expected_result, my_result)
def test_cc2_rectleaky_derivative_slope_zero_rectlin_equiv(): from neon.backends.cc2 import GPU be = GPU() inputs = be.uniform(low=-5.0, high=10.0, size=(10, 10)) lin_buf = be.empty(inputs.shape) leaky_buf = be.empty(inputs.shape) be.rectlin_derivative(inputs, out=lin_buf) be.rectleaky_derivative(inputs, slope=0.0, out=leaky_buf) assert_tensor_equal(lin_buf, leaky_buf)
def test_xcov_cc2tensor(): np.random.seed(0) n = 10 k = 8 (k1, k2) = (3, 5) a = np.array(np.random.randn(k, n) * 10, dtype='float32', order='C') acc = xcc(a[:k1], a[k1:]) expected_result = 0.5 * (acc**2.).sum() from neon.backends.cc2 import GPU, GPUTensor be = GPU(rng_seed=0) # to ensure cublas_init() is called. outputs = GPUTensor(a.copy()) tempbuf1 = be.empty((k1, n)) tempbuf2 = be.empty((k2, n)) tempbuf3 = be.empty((k1, k2)) tempbuf4 = be.empty(outputs.shape) temp = [tempbuf1, tempbuf2, tempbuf3, tempbuf4] my_result = xcov_cost(be, outputs, [], temp, k1) assert_tensor_near_equal(expected_result, my_result, tolerance=1e-3)
def test_xcov_cc2tensor(): np.random.seed(0) n = 10 k = 8 (k1, k2) = (3, 5) a = np.array(np.random.randn(k, n)*10, dtype='float32', order='C') acc = xcc(a[:k1], a[k1:]) expected_result = 0.5 * (acc**2.).sum() from neon.backends.cc2 import GPU, GPUTensor be = GPU(rng_seed=0) # to ensure cublas_init() is called. outputs = GPUTensor(a.copy()) tempbuf1 = be.empty((k1, n)) tempbuf2 = be.empty((k2, n)) tempbuf3 = be.empty((k1, k2)) tempbuf4 = be.empty(outputs.shape) temp = [tempbuf1, tempbuf2, tempbuf3, tempbuf4] my_result = xcov_cost(be, outputs, [], temp, k1) assert_tensor_near_equal(expected_result, my_result, tolerance=1e-3)
class TestGPU(object): def setup(self): from neon.backends.cc2 import GPU, GPUTensor # this code gets called prior to each test self.be = GPU(rng_seed=0) self.gpt = GPUTensor def test_empty_creation(self): tns = self.be.empty((4, 3)) assert tns.shape == (4, 3) def test_array_creation(self): tns = self.be.array([[1, 2], [3, 4]]) assert tns.shape == (2, 2) assert_tensor_equal(tns, self.gpt([[1, 2], [3, 4]])) def test_zeros_creation(self): tns = self.be.zeros([3, 1]) assert tns.shape == (3, 1) assert_tensor_equal(tns, self.gpt([[0], [0], [0]])) def test_ones_creation(self): tns = self.be.ones([1, 4]) assert tns.shape == (1, 4) assert_tensor_equal(tns, self.gpt([[1, 1, 1, 1]])) def test_all_equal(self): left = self.be.ones([2, 2]) right = self.be.ones([2, 2]) out = self.be.empty([2, 2]) self.be.equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, self.gpt([[1, 1], [1, 1]])) def test_some_equal(self): left = self.be.ones([2, 2]) right = self.be.array([[0, 1], [0, 1]]) out = self.be.empty([2, 2]) self.be.equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, self.gpt([[0, 1], [0, 1]])) def test_none_equal(self): left = self.be.ones([2, 2]) right = self.be.zeros([2, 2]) out = self.be.empty([2, 2]) self.be.equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, self.gpt([[0, 0], [0, 0]])) def test_all_not_equal(self): left = self.be.ones([2, 2]) right = self.be.zeros([2, 2]) out = self.be.empty([2, 2]) self.be.not_equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, self.gpt([[1, 1], [1, 1]])) def test_some_not_equal(self): left = self.be.ones([2, 2]) right = self.be.array([[0, 1], [0, 1]]) out = self.be.empty([2, 2]) self.be.not_equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, self.gpt([[1, 0], [1, 0]])) def test_none_not_equal(self): left = self.be.ones([2, 2]) right = self.be.ones([2, 2]) out = self.be.empty([2, 2]) self.be.not_equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, self.gpt([[0, 0], [0, 0]])) def test_greater(self): left = self.be.array([[-1, 0], [1, 92]]) right = self.be.ones([2, 2]) out = self.be.empty([2, 2]) self.be.greater(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, self.gpt([[0, 0], [0, 1]])) def test_greater_equal(self): left = self.be.array([[-1, 0], [1, 92]]) right = self.be.ones([2, 2]) out = self.be.empty([2, 2]) self.be.greater_equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, self.gpt([[0, 0], [1, 1]])) def test_less(self): left = self.be.array([[-1, 0], [1, 92]]) right = self.be.ones([2, 2]) out = self.be.empty([2, 2]) self.be.less(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, self.gpt([[1, 1], [0, 0]])) def test_less_equal(self): left = self.be.array([[-1, 0], [1, 92]]) right = self.be.ones([2, 2]) out = self.be.empty([2, 2]) self.be.less_equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, self.gpt([[1, 1], [1, 0]])) @nottest # TODO: cudanet doesn't currently support noaxis argmin def test_argmin_noaxis(self): tsr = self.be.array([[-1, 0], [1, 92]]) out = self.be.empty([1, 1]) self.be.argmin(tsr, None, out) assert_tensor_equal(out, self.gpt([[0]])) def test_argmin_axis0(self): tsr = self.be.array([[-1, 0], [1, 92]]) out = self.be.empty((1, 2)) self.be.argmin(tsr, 0, out) assert_tensor_equal(out, self.gpt([[0, 0]])) def test_argmin_axis1(self): tsr = self.be.array([[-1, 10], [11, 9]]) out = self.be.empty((2, 1)) self.be.argmin(tsr, 1, out) assert_tensor_equal(out, self.gpt([[0], [1]])) @nottest # TODO: cudanet doesn't currently support noaxis argmax def test_argmax_noaxis(self): tsr = self.be.array([[-1, 0], [1, 92]]) out = self.be.empty([1, 1]) self.be.argmax(tsr, None, out) assert_tensor_equal(out, self.gpt(3)) def test_argmax_axis0(self): tsr = self.be.array([[-1, 0], [1, 92]]) out = self.be.empty((1, 2)) self.be.argmax(tsr, 0, out) assert_tensor_equal(out, self.gpt([[1, 1]])) def test_argmax_axis1(self): tsr = self.be.array([[-1, 10], [11, 9]]) out = self.be.empty((2, 1)) self.be.argmax(tsr, 1, out) assert_tensor_equal(out, self.gpt([[1], [0]])) def test_2norm(self): tsr = self.be.array([[-1, 0], [1, 3]]) rpow = 1. / 2 # -> sum([[1, 0], [1, 9]], axis=0)**.5 -> sqrt([2, 9]) out = self.be.empty((1, 2)) assert_tensor_equal(self.be.norm(tsr, order=2, axis=0, out=out), self.gpt([[2**rpow, 9**rpow]])) # -> sum([[1, 0], [1, 9]], axis=1)**.5 -> sqrt([1, 10]) out = self.be.empty((2, 1)) assert_tensor_equal(self.be.norm(tsr, order=2, axis=1, out=out), self.gpt([1**rpow, 10**rpow])) def test_1norm(self): tsr = self.be.array([[-1, 0], [1, 3]]) # -> sum([[1, 0], [1, 3]], axis=0)**1 -> [2, 3] out = self.be.empty((1, 2)) assert_tensor_equal(self.be.norm(tsr, order=1, axis=0, out=out), self.gpt([[2, 3]])) # -> sum([[1, 0], [1, 3]], axis=1)**1 -> [1, 4] out = self.be.empty((2, 1)) assert_tensor_equal(self.be.norm(tsr, order=1, axis=1, out=out), self.gpt([1, 4])) def test_0norm(self): tsr = self.be.array([[-1, 0], [1, 3]]) # -> sum(tsr != 0, axis=0) -> [2, 1] out = self.be.empty((1, 2)) assert_tensor_equal(self.be.norm(tsr, order=0, axis=0, out=out), self.gpt([[2, 1]])) # -> sum(tsr != 0, axis=1) -> [1, 2] out = self.be.empty((2, 1)) assert_tensor_equal(self.be.norm(tsr, order=0, axis=1, out=out), self.gpt([1, 2])) def test_infnorm(self): tsr = self.be.array([[-1, 0], [1, 3]]) # -> max(abs(tsr), axis=0) -> [1, 3] assert_tensor_equal(self.be.norm(tsr, order=float('inf'), axis=0), self.gpt([[1, 3]])) # -> max(abs(tsr), axis=1) -> [1, 3] assert_tensor_equal(self.be.norm(tsr, order=float('inf'), axis=1), self.gpt([1, 3])) def test_neginfnorm(self): tsr = self.be.array([[-1, 0], [1, 3]]) # -> min(abs(tsr), axis=0) -> [1, 0] assert_tensor_equal(self.be.norm(tsr, order=float('-inf'), axis=0), self.gpt([[1, 0]])) # -> min(abs(tsr), axis=1) -> [0, 1] assert_tensor_equal(self.be.norm(tsr, order=float('-inf'), axis=1), self.gpt([0, 1])) def test_lrgnorm(self): tsr = self.be.array([[-1, 0], [1, 3]]) rpow = 1. / 5 # -> sum([[1, 0], [1, 243]], axis=0)**rpow -> rpow([2, 243]) out = self.be.empty((1, 2)) assert_tensor_equal(self.be.norm(tsr, order=5, axis=0, out=out), self.gpt([[2**rpow, 243**rpow]])) # -> sum([[1, 0], [1, 243]], axis=1)**rpow -> rpow([1, 244]) # 244**.2 == ~3.002465 hence the near_equal test out = self.be.empty((2, 1)) assert_tensor_near_equal(self.be.norm(tsr, order=5, axis=1, out=out), self.gpt([1**rpow, 244**rpow]), 1e-6) def test_negnorm(self): tsr = self.be.array([[-1, -2], [1, 3]]) rpow = -1. / 3 # -> sum([[1, .125], [1, .037037]], axis=0)**rpow -> rpow([2, .162037]) out = self.be.empty((1, 2)) assert_tensor_equal(self.be.norm(tsr, order=-3, axis=0, out=out), self.gpt([[2**rpow, .162037037037**rpow]])) # -> sum([[1, .125], [1, .037037]], axis=1)**rpow -> # rpow([1.125, 1.037037]) out = self.be.empty((2, 1)) assert_tensor_near_equal(self.be.norm(tsr, order=-3, axis=1, out=out), self.gpt([1.125**rpow, 1.037037**rpow]), 1e-6)