class TestCPU(object): def __init__(self): # this code gets called prior to each test self.be = CPU() def test_empty_creation(self): tns = self.be.empty((4, 3)) assert tns.shape == (4, 3) def test_array_creation(self): tns = self.be.array([[1, 2], [3, 4]]) assert tns.shape == (2, 2) assert_tensor_equal(tns, CPUTensor([[1, 2], [3, 4]])) def test_zeros_creation(self): tns = self.be.zeros([3, 1]) assert tns.shape == (3, 1) assert_tensor_equal(tns, CPUTensor([[0], [0], [0]])) def test_ones_creation(self): tns = self.be.ones([1, 4]) assert tns.shape == (1, 4) assert_tensor_equal(tns, CPUTensor([[1, 1, 1, 1]])) def test_all_equal(self): left = self.be.ones([2, 2]) right = self.be.ones([2, 2]) out = self.be.empty([2, 2]) self.be.equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, CPUTensor([[1, 1], [1, 1]])) def test_some_equal(self): left = self.be.ones([2, 2]) right = self.be.array([[0, 1], [0, 1]]) out = self.be.empty([2, 2]) self.be.equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, CPUTensor([[0, 1], [0, 1]])) def test_none_equal(self): left = self.be.ones([2, 2]) right = self.be.zeros([2, 2]) out = self.be.empty([2, 2]) self.be.equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, CPUTensor([[0, 0], [0, 0]])) def test_all_not_equal(self): left = self.be.ones([2, 2]) right = self.be.zeros([2, 2]) out = self.be.empty([2, 2]) self.be.not_equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, CPUTensor([[1, 1], [1, 1]])) def test_some_not_equal(self): left = self.be.ones([2, 2]) right = self.be.array([[0, 1], [0, 1]]) out = self.be.empty([2, 2]) self.be.not_equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, CPUTensor([[1, 0], [1, 0]])) def test_none_not_equal(self): left = self.be.ones([2, 2]) right = self.be.ones([2, 2]) out = self.be.empty([2, 2]) self.be.not_equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, CPUTensor([[0, 0], [0, 0]])) def test_greater(self): left = self.be.array([[-1, 0], [1, 92]]) right = self.be.ones([2, 2]) out = self.be.empty([2, 2]) self.be.greater(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, CPUTensor([[0, 0], [0, 1]])) def test_greater_equal(self): left = self.be.array([[-1, 0], [1, 92]]) right = self.be.ones([2, 2]) out = self.be.empty([2, 2]) self.be.greater_equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, CPUTensor([[0, 0], [1, 1]])) def test_less(self): left = self.be.array([[-1, 0], [1, 92]]) right = self.be.ones([2, 2]) out = self.be.empty([2, 2]) self.be.less(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, CPUTensor([[1, 1], [0, 0]])) def test_less_equal(self): left = self.be.array([[-1, 0], [1, 92]]) right = self.be.ones([2, 2]) out = self.be.empty([2, 2]) self.be.less_equal(left, right, out) assert out.shape == (2, 2) assert_tensor_equal(out, CPUTensor([[1, 1], [1, 0]])) def test_argmin_noaxis(self): be = CPU() tsr = be.array([[-1, 0], [1, 92]]) out = be.empty([1, 1]) be.argmin(tsr, None, out) assert_tensor_equal(out, CPUTensor([[0]])) def test_argmin_axis0(self): be = CPU() tsr = be.array([[-1, 0], [1, 92]]) out = be.empty((1, 2)) be.argmin(tsr, 0, out) assert_tensor_equal(out, CPUTensor([[0, 0]])) def test_argmin_axis1(self): be = CPU() tsr = be.array([[-1, 10], [11, 9]]) out = be.empty((2, 1)) be.argmin(tsr, 1, out) assert_tensor_equal(out, CPUTensor([0, 1])) def test_argmax_noaxis(self): be = CPU() tsr = be.array([[-1, 0], [1, 92]]) out = be.empty([1, 1]) be.argmax(tsr, None, out) assert_tensor_equal(out, CPUTensor(3)) def test_argmax_axis0(self): be = CPU() tsr = be.array([[-1, 0], [1, 92]]) out = be.empty((2, )) be.argmax(tsr, 0, out) assert_tensor_equal(out, CPUTensor([1, 1])) def test_argmax_axis1(self): be = CPU() tsr = be.array([[-1, 10], [11, 9]]) out = be.empty((2, )) be.argmax(tsr, 1, out) assert_tensor_equal(out, CPUTensor([1, 0])) def test_2norm(self): tsr = self.be.array([[-1, 0], [1, 3]]) rpow = 1. / 2 # -> sum([[1, 0], [1, 9]], axis=0)**.5 -> sqrt([2, 9]) assert_tensor_equal(self.be.norm(tsr, order=2, axis=0), CPUTensor([[2**rpow, 9**rpow]])) # -> sum([[1, 0], [1, 9]], axis=1)**.5 -> sqrt([1, 10]) assert_tensor_equal(self.be.norm(tsr, order=2, axis=1), CPUTensor([1**rpow, 10**rpow])) def test_1norm(self): tsr = self.be.array([[-1, 0], [1, 3]]) # -> sum([[1, 0], [1, 3]], axis=0)**1 -> [2, 3] assert_tensor_equal(self.be.norm(tsr, order=1, axis=0), CPUTensor([[2, 3]])) # -> sum([[1, 0], [1, 3]], axis=1)**1 -> [1, 4] assert_tensor_equal(self.be.norm(tsr, order=1, axis=1), CPUTensor([1, 4])) def test_0norm(self): tsr = self.be.array([[-1, 0], [1, 3]]) # -> sum(tsr != 0, axis=0) -> [2, 1] assert_tensor_equal(self.be.norm(tsr, order=0, axis=0), CPUTensor([[2, 1]])) # -> sum(tsr != 0, axis=1) -> [1, 2] assert_tensor_equal(self.be.norm(tsr, order=0, axis=1), CPUTensor([1, 2])) def test_infnorm(self): tsr = self.be.array([[-1, 0], [1, 3]]) # -> max(abs(tsr), axis=0) -> [1, 3] assert_tensor_equal(self.be.norm(tsr, order=float('inf'), axis=0), CPUTensor([[1, 3]])) # -> max(abs(tsr), axis=1) -> [1, 3] assert_tensor_equal(self.be.norm(tsr, order=float('inf'), axis=1), CPUTensor([1, 3])) def test_neginfnorm(self): tsr = self.be.array([[-1, 0], [1, 3]]) # -> min(abs(tsr), axis=0) -> [1, 0] assert_tensor_equal(self.be.norm(tsr, order=float('-inf'), axis=0), CPUTensor([[1, 0]])) # -> min(abs(tsr), axis=1) -> [0, 1] assert_tensor_equal(self.be.norm(tsr, order=float('-inf'), axis=1), CPUTensor([0, 1])) def test_lrgnorm(self): tsr = self.be.array([[-1, 0], [1, 3]]) rpow = 1. / 5 # -> sum([[1, 0], [1, 243]], axis=0)**rpow -> rpow([2, 243]) assert_tensor_equal(self.be.norm(tsr, order=5, axis=0), CPUTensor([[2**rpow, 243**rpow]])) # -> sum([[1, 0], [1, 243]], axis=1)**rpow -> rpow([1, 244]) # 244**.2 == ~3.002465 hence the near_equal test assert_tensor_near_equal(self.be.norm(tsr, order=5, axis=1), CPUTensor([1**rpow, 244**rpow]), 1e-6) def test_negnorm(self): tsr = self.be.array([[-1, -2], [1, 3]]) rpow = -1. / 3 # -> sum([[1, .125], [1, .037037]], axis=0)**rpow -> rpow([2, .162037]) assert_tensor_equal(self.be.norm(tsr, order=-3, axis=0), CPUTensor([[2**rpow, .162037037037**rpow]])) # -> sum([[1, .125], [1, .037037]], axis=1)**rpow -> # rpow([1.125, 1.037037]) assert_tensor_near_equal(self.be.norm(tsr, order=-3, axis=1), CPUTensor([1.125**rpow, 1.037037**rpow]), 1e-6)
def test_argmax_noaxis(self): be = CPU() tsr = be.array([[-1, 0], [1, 92]]) out = be.empty([1, 1]) be.argmax(tsr, None, out) assert_tensor_equal(out, CPUTensor(3))
def test_argmax_axis1(self): be = CPU() tsr = be.array([[-1, 10], [11, 9]]) out = be.empty((2, )) be.argmax(tsr, 1, out) assert_tensor_equal(out, CPUTensor([1, 0]))
def test_argmin_axis0(self): be = CPU() tsr = be.array([[-1, 0], [1, 92]]) out = be.empty((1, 2)) be.argmin(tsr, 0, out) assert_tensor_equal(out, CPUTensor([[0, 0]]))