def wrap_dataloader(dl): dl = OneHot(dl, index=1, nclasses=10) dl = TypeCast(dl, index=0, dtype=np.float32) dl = ValueNormalize(dl, index=0, source_range=[0., 255.], target_range=[-1., 1.]) return dl
def make_test_loader(manifest_file, manifest_root, backend_obj, subset_pct=100): aeon_config = common_config(manifest_file, manifest_root, backend_obj.bsz) aeon_config['subset_fraction'] = float(subset_pct / 100.0) dl = AeonDataLoader(aeon_config, backend_obj) dl = OneHot(dl, index=1, nclasses=101) dl = TypeCast(dl, index=0, dtype=np.float32) return dl
def make_train_loader(manifest_file, manifest_root, backend_obj, subset_pct=100, random_seed=0): aeon_config = common_config(manifest_file, manifest_root, backend_obj.bsz) aeon_config['subset_fraction'] = float(subset_pct / 100.0) aeon_config['shuffle_manifest'] = True aeon_config['shuffle_every_epoch'] = True aeon_config['random_seed'] = random_seed aeon_config['video']['frame']['center'] = False aeon_config['video']['frame']['flip_enable'] = True dl = AeonDataLoader(aeon_config, backend_obj) dl = OneHot(dl, index=1, nclasses=101) dl = TypeCast(dl, index=0, dtype=np.float32) return dl
def wrap_dataloader(dl): dl = OneHot(dl, index=1, nclasses=2) dl = TypeCast(dl, index=0, dtype=np.float32) return dl
def transformers(dl): dl = OneHot(dl, nclasses=10, index=1) dl = TypeCast(dl, index=0, dtype=np.float32) dl = BGRMeanSubtract(dl, index=0, pixel_mean=bgr_means) return dl
def wrap_dataloader(dl): dl = OneHot(dl, index=1, nclasses=10) dl = TypeCast(dl, index=0, dtype=np.float32) dl = BGRMeanSubtract(dl, index=0) return dl
def wrap_dataloader(aeon_config): dl = AeonDataLoader(aeon_config) dl = OneHot(dl, index=1, nclasses=101) dl = TypeCast(dl, index=0, dtype=np.float32) return dl
# Set up the training set to load via aeon # Augmentating the data via flipping, rotating, changing contrast/brightness image_config = dict(height=64, width=64, flip_enable=True, channels=1, contrast=(0.5,1.0), brightness=(0.5,1.0), scale=(0.7,1), fixed_aspect_ratio=True) label_config = dict(binary=False) config = dict(type="image,label", image=image_config, label=label_config, manifest_filename='manifest_all_but_9.csv', minibatch_size=args.batch_size, shuffle_every_epoch = True) train_set = DataLoader(config, be) train_set = TypeCast(train_set, index=0, dtype=np.float32) # cast image to float train_set = OneHot(train_set, index=1, nclasses=2) # Set up the validation set to load via aeon image_config = dict(height=64, width=64, channels=1) label_config = dict(binary=False) config = dict(type="image,label", image=image_config, label=label_config, manifest_filename='manifest_subset9_augmented.csv', minibatch_size=args.batch_size) valid_set = DataLoader(config, be) valid_set = TypeCast(valid_set, index=0, dtype=np.float32) # cast image to float valid_set = OneHot(valid_set, index=1, nclasses=2) # Set up the testset to load via aeon image_config = dict(height=64, width=64, channels=1)
print('Batch size = {}'.format(args.batch_size)) # setup backend be = gen_backend(**extract_valid_args(args, gen_backend)) # Set up the testset to load via aeon image_config = dict(height=64, width=64, channels=1) label_config = dict(binary=False) config = dict(type="image,label", image=image_config, label=label_config, manifest_filename=testFileName, minibatch_size=args.batch_size, subset_fraction=1) test_set = DataLoader(config, be) test_set = TypeCast(test_set, index=0, dtype=np.float32) # cast image to float test_set = OneHot(test_set, index=1, nclasses=2) lunaModel = Model('LUNA16_VGG_model_no_batch.prm') pred, target = lunaModel.get_outputs(test_set, return_targets=True) # Reshape to a single prediction vector pred = pred.T target = target.T np.set_printoptions(precision=3, suppress=True) print(' ') print(pred) print(target)