def translate_single_stack_using_imglib2(imp, dx, dy, dz):
  # wrap into a float imglib2 and translate
  #   conversion into float is necessary due to "overflow of n-linear interpolation due to accuracy limits of unsigned bytes"
  #   see: https://github.com/fiji/fiji/issues/136#issuecomment-173831951
  img = ImagePlusImgs.from(imp.duplicate())
  extended = Views.extendBorder(img)
  converted = Converters.convert(extended, RealFloatSamplerConverter())
  interpolant = Views.interpolate(converted, NLinearInterpolatorFactory())
  
  # translate
  if imp.getNDimensions()==3:
    transformed = RealViews.affine(interpolant, Translation3D(dx, dy, dz))
  elif imp.getNDimensions()==2:
    transformed = RealViews.affine(interpolant, Translation2D(dx, dy))
  else:
    IJ.log("Can only work on 2D or 3D stacks")
    return None
  
  cropped = Views.interval(transformed, img)
  # wrap back into bit depth of input image and return
  bd = imp.getBitDepth()
  if bd==8:
    return(ImageJFunctions.wrapUnsignedByte(cropped,"imglib2"))
  elif bd == 16:
    return(ImageJFunctions.wrapUnsignedShort(cropped,"imglib2"))
  elif bd == 32:
    return(ImageJFunctions.wrapFloat(cropped,"imglib2"))
  else:
    return None    
예제 #2
0
def translate_single_stack_using_imglib2(imp, dx, dy, dz):
  # wrap into a float imglib2 and translate
  #   conversion into float is necessary due to "overflow of n-linear interpolation due to accuracy limits of unsigned bytes"
  #   see: https://github.com/fiji/fiji/issues/136#issuecomment-173831951
  img = ImagePlusImgs.from(imp.duplicate())
  extended = Views.extendBorder(img)
  converted = Converters.convert(extended, RealFloatSamplerConverter())
  interpolant = Views.interpolate(converted, NLinearInterpolatorFactory())
  
  # translate
  if imp.getNDimensions()==3:
    transformed = RealViews.affine(interpolant, Translation3D(dx, dy, dz))
  elif imp.getNDimensions()==2:
    transformed = RealViews.affine(interpolant, Translation2D(dx, dy))
  else:
    IJ.log("Can only work on 2D or 3D stacks")
    return None
  
  cropped = Views.interval(transformed, img)
  # wrap back into bit depth of input image and return
  bd = imp.getBitDepth()
  if bd==8:
    return(ImageJFunctions.wrapUnsignedByte(cropped,"imglib2"))
  elif bd == 16:
    return(ImageJFunctions.wrapUnsignedShort(cropped,"imglib2"))
  elif bd == 32:
    return(ImageJFunctions.wrapFloat(cropped,"imglib2"))
  else:
    return None    
def translate_using_imglib2(imp, dx, dy, dz):
  print "imp channels",imp.getNChannels()
  # todo:
  # if multiple channels use Duplicator to translate each channel individually
  ## wrap
  # http://javadoc.imagej.net/ImgLib2/net/imglib2/img/imageplus/ImagePlusImg.html
  img = ImagePlusImgs.from(imp.duplicate())
  print "dimensions:",img.numDimensions()
  print img.getChannels()
  ## prepare image
  print "img",img
  ddd
  extended = Views.extendBorder(img)
  #print "extended",extended
  #print "extended",extended.dimension(1)
  dims = zeros(4, 'l')
  img.dimensions(dims)
  print "dims",dims
  converted = Converters.convert(extended, RealFloatSamplerConverter())
  composite = Views.collapseReal(converted, imp.getNChannels())
  print "composite",composite
  interpolant = Views.interpolate(composite, NLinearInterpolatorFactory())
  #print "interpolant",interpolant
  transformed = RealViews.affine(interpolant, Translation3D(dx, dy, dz))
  print "transformed", transformed
  cropped = Views.interval(transformed, img)
  print "cropped.numDimensions()", cropped.numDimensions()
  print "cropped",cropped
  ## wrap back and return
  bd = imp.getBitDepth()
  # maybe simply wrap works?
  if bd==8:
    return(ImageJFunctions.wrapUnsignedByte(cropped,"imglib2"))
  elif bd == 16:
    return(ImageJFunctions.wrapUnsignedShort(cropped,"imglib2"))
  elif bd == 32:
    return(ImageJFunctions.wrapFloat(cropped,"imglib2"))
  else:
    return None    
예제 #4
0
redgreen= ops.add(red32,green32)
display.createDisplay("redgreen", data.create(redgreen))

# make a copy of the red + green image
copy=redgreen.copy()
# wrap as ImagePlus
imp=ImageJFunctions.wrap(copy, "wrapped")

# create and call background subtractor
bgs=BackgroundSubtracter()
bgs.rollingBallBackground(imp.getProcessor(), 50.0, False, False, True, True, True) 

# wrap as Img and display
iplus=ImagePlus("bgs", imp.getProcessor())
print type(imp)
imgBgs=ImageJFunctions.wrapFloat(iplus)
display.createDisplay("back_sub", data.create(ImgPlus(imgBgs))) 

kernel = DetectionUtils.createLoGKernel( 3.0, 2, array([1.0, 1.0], 'd' ) )

print type(kernel)
print type(imgBgs)
print type(red32.getImg())

log = ops.convolve(ops.create( dimensions2D, FloatType()), imgBgs, kernel)
display.createDisplay("log", data.create(ImgPlus(log)))

otsu=ops.run("threshold", ops.create( dimensions2D, BitType()), log, Otsu())

display.createDisplay("thresholded", data.create(ImgPlus(otsu)))
예제 #5
0
def decon(seriesNumber, imgP, psfP):	
	nChannels = imgP.getNChannels()	
	
	if nChannels>1:
		imgPc = ChannelSplitter.split(imgP)
	else:
		imgPc = [imgP]
	
	if psfP.getNChannels()>1:
		psfPc = ChannelSplitter.split(psfP)

		if len(psfPc)<nChannels:
			log("PSF image has fewer channels! Skipping image's trailing channels {} to {}".format(psfP.getNChannels()+1,nChannels))
			imgPc = imgPc[:psfP.getNChannels()]
	else:
		psfPc = [psfP]*nChannels
		
	nChannels = len(imgPc)
	if combinedChannels:
		deconChannels = None
		
	for channelNumber in range(nChannels):
		log("Processing image {} series {} channel {}..".format(inputFile.getAbsolutePath(),seriesNumber,channelNumber))
	
		imgP = imgPc[channelNumber]
		psfP = psfPc[channelNumber]
		
		img = ImageJFunctions.wrap(imgP)
		psf = ImageJFunctions.wrap(psfP)
		
		# convert to float (TODO: make sure deconvolution op works on other types)
		imgF=ops.convert().float32(img)
		psfF=ops.convert().float32(psf)
		
		# make psf same size as image
		psfSize=FinalDimensions([img.dimension(0), img.dimension(1), img.dimension(2)]);
		
		# add border in z direction
		#borderSize=[0,0,psfSize.dimension(2)/2];
		borderSize=[0,0,0];
		
		deconvolved = ops.deconvolve().richardsonLucy(imgF, psfF, numIterations);

		# Create the ImagePlus, copy scale and dimensions
		deconvolvedImp = ImageJFunctions.wrapFloat(deconvolved,inputFile.getName()+'-series{}-channel{}-deconvolvedWith-{}-{}iterations.tiff'.format(seriesNumber,channelNumber,psfFile.getName(),numIterations))
		deconvolvedImp.copyScale(imgP)
		width, height, nChannelz, nSlices, nFrames = imgP.getDimensions()
		deconvolvedImp.setDimensions(nChannelz, nSlices, nFrames)

		if combinedChannels:
			if deconChannels is None:
				deconChannels = ImageStack(width,height)
			
			for z in range(nSlices):
				deconChannels.addSlice(deconvolvedImp.getStack().getProcessor(z))
		else:
			IJ.saveAsTiff(deconvolvedImp,os.path.join(outputDirectory.getAbsolutePath(),deconvolvedImp.getTitle()))
	
	if combinedChannels:
		final = ImageStack(width,height)
		for z in range(nSlices):
			for c in range(nChannels):
				i = c*nSlices+z
				final.addSlice(deconChannels.getProcessor(i+1))
				
		hyperstack = ImagePlus(inputFile.getName()+'-series{}-deconvolvedWith-{}-{}iterations.tiff'.format(seriesNumber,psfFile.getName(),numIterations),final)
		hyperstack = HyperStackConverter.toHyperStack(hyperstack,nChannels,nSlices,1)
		hyperstack.copyScale(imgP)
		IJ.saveAsTiff(hyperstack,os.path.join(outputDirectory.getAbsolutePath(),hyperstack.getTitle()))
예제 #6
0
display.createDisplay("redgreen", data.create(redgreen))

# make a copy of the red + green image
copy = redgreen.copy()
# wrap as ImagePlus
imp = ImageJFunctions.wrap(copy, "wrapped")

# create and call background subtractor
bgs = BackgroundSubtracter()
bgs.rollingBallBackground(imp.getProcessor(), 50.0, False, False, True, True,
                          True)

# wrap as Img and display
iplus = ImagePlus("bgs", imp.getProcessor())
print type(imp)
imgBgs = ImageJFunctions.wrapFloat(iplus)
display.createDisplay("back_sub", data.create(ImgPlus(imgBgs)))

kernel = DetectionUtils.createLoGKernel(3.0, 2, array([1.0, 1.0], 'd'))

print type(kernel)
print type(imgBgs)
print type(red32.getImg())

log = ops.convolve(ops.create(dimensions2D, FloatType()), imgBgs, kernel)
display.createDisplay("log", data.create(ImgPlus(log)))

otsu = ops.run("threshold", ops.create(dimensions2D, BitType()), log, Otsu())

display.createDisplay("thresholded", data.create(ImgPlus(otsu)))