def top_feature_net_r(input, anchors, inds_inside, num_bases): """ :param input: :param anchors: :param inds_inside: :param num_bases: :return: top_features, top_scores, top_probs, top_deltas, proposals, proposal_scores """ stride=1. #with tf.variable_scope('top-preprocess') as scope: # input = input batch_size, img_height, img_width, img_channel = input.get_shape().as_list() with tf.variable_scope('feature-extract-resnet') as scope: print('build_resnet') block = ResnetBuilder.resnet_tiny_smaller_kernel(input) feature = block top_feature_stride = 4 # resnet_input = resnet.get_layer('input_1').input # resnet_output = resnet.get_layer('add_7').output # resnet_f = Model(inputs=resnet_input, outputs=resnet_output) # add_7 # # print(resnet_f.summary()) # block = resnet_f(input) block = upsample2d(block, factor=2, has_bias=True, trainable=True, name='upsampling') with tf.variable_scope('predict') as scope: # block = upsample2d(block, factor=4, has_bias=True, trainable=True, name='1') # up = block # kernel_size = config.cfg.TOP_CONV_KERNEL_SIZE top_anchors_stride = 2 block = conv2d_bn_relu(block, num_kernels=128, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME', name='2') scores = conv2d(block, num_kernels=2 * num_bases, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME',name='score') probs = tf.nn.softmax(tf.reshape(scores, [-1, 2]), name='prob') deltas = conv2d(block, num_kernels=4 * num_bases, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME',name='delta') #<todo> flip to train and test mode nms (e.g. different nms_pre_topn values): use tf.cond with tf.variable_scope('NMS') as scope: #non-max img_scale = 1 rois, roi_scores = tf_rpn_nms( probs, deltas, anchors, inds_inside, stride, img_width, img_height, img_scale, nms_thresh=0.3, min_size=stride, nms_pre_topn=6000, nms_post_topn=100, name ='nms') print ('top: scale=%f, stride=%d'%(1./stride, stride)) return feature, scores, probs, deltas, rois, roi_scores, top_anchors_stride,top_feature_stride
def top_feature_net_r(input, anchors, inds_inside, num_bases): """ :param input: :param anchors: :param inds_inside: :param num_bases: :return: top_features, top_scores, top_probs, top_deltas, proposals, proposal_scores """ batch_size, img_height, img_width, img_channel = input.get_shape().as_list( ) with tf.variable_scope('feature-extract-resnet') as scope: print('build_resnet') block = ResnetBuilder.resnet_tiny_smaller_kernel(input) feature = block top_feature_stride = 4 # resnet_input = resnet.get_layer('input_1').input # resnet_output = resnet.get_layer('add_7').output # resnet_f = Model(inputs=resnet_input, outputs=resnet_output) # add_7 # # print(resnet_f.summary()) # block = resnet_f(input) block = upsample2d(block, factor=2, has_bias=True, trainable=True, name='upsampling') with tf.variable_scope('predict') as scope: # block = upsample2d(block, factor=4, has_bias=True, trainable=True, name='1') # up = block # kernel_size = config.cfg.TOP_CONV_KERNEL_SIZE top_anchors_stride = 2 block = conv2d_bn_relu(block, num_kernels=128, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME', name='2') scores = conv2d(block, num_kernels=2 * num_bases, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME', name='score') probs = tf.nn.softmax(tf.reshape(scores, [-1, 2]), name='prob') deltas = conv2d(block, num_kernels=4 * num_bases, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME', name='delta') with tf.variable_scope('RPN-NMS') as scope: train_rois, train_roi_scores = tf_rpn_nms( probs, deltas, anchors, inds_inside, \ top_anchors_stride, img_width, img_height, img_scale=1, \ nms_thresh=0.7, min_size=top_anchors_stride, \ nms_pre_topn=CFG.TRAIN.RPN_NMS_PRE_TOPN, nms_post_topn=CFG.TRAIN.RPN_NMS_POST_TOPN, \ name ='train-rpn-nms') infer_rois, infer_roi_scores = tf_rpn_nms( probs, deltas, anchors, inds_inside, \ top_anchors_stride, img_width, img_height, img_scale=1, \ nms_thresh=0.1, min_size=top_anchors_stride, \ nms_pre_topn=CFG.TRAIN.RPN_NMS_PRE_TOPN, nms_post_topn=CFG.TEST.RPN_NMS_POST_TOPN, \ name ='infer-rpn-nms') print('top: anchor stride=%d, feature_stride=%d' % (top_anchors_stride, top_feature_stride)) return feature, scores, probs, deltas, train_rois, train_roi_scores, top_anchors_stride,top_feature_stride, \ infer_rois, infer_roi_scores
def top_feature_net_r(input, anchors, inds_inside, num_bases): """ :param input: :param anchors: :param inds_inside: :param num_bases: :return: top_features, top_scores, top_probs, top_deltas, proposals, proposal_scores """ stride = 1. #with tf.variable_scope('top-preprocess') as scope: # input = input batch_size, img_height, img_width, img_channel = input.get_shape().as_list( ) with tf.variable_scope('feature-extract-resnet') as scope: print('build_resnet') block = ResnetBuilder.resnet_tiny_smaller_kernel(input) feature = block top_feature_stride = 4 # resnet_input = resnet.get_layer('input_1').input # resnet_output = resnet.get_layer('add_7').output # resnet_f = Model(inputs=resnet_input, outputs=resnet_output) # add_7 # # print(resnet_f.summary()) # block = resnet_f(input) block = upsample2d(block, factor=2, has_bias=True, trainable=True, name='upsampling') with tf.variable_scope('predict') as scope: # block = upsample2d(block, factor=4, has_bias=True, trainable=True, name='1') # up = block # kernel_size = config.cfg.TOP_CONV_KERNEL_SIZE top_anchors_stride = 2 block = conv2d_bn_relu(block, num_kernels=128, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME', name='2') scores = conv2d(block, num_kernels=2 * num_bases, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME', name='score') probs = tf.nn.softmax(tf.reshape(scores, [-1, 2]), name='prob') deltas = conv2d(block, num_kernels=4 * num_bases, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME', name='delta') #<todo> flip to train and test mode nms (e.g. different nms_pre_topn values): use tf.cond with tf.variable_scope('NMS') as scope: #non-max img_scale = 1 rois, roi_scores = tf_rpn_nms(probs, deltas, anchors, inds_inside, stride, img_width, img_height, img_scale, nms_thresh=0.3, min_size=stride, nms_pre_topn=6000, nms_post_topn=100, name='nms') print('top: scale=%f, stride=%d' % (1. / stride, stride)) return feature, scores, probs, deltas, rois, roi_scores, top_anchors_stride, top_feature_stride