def log_rpn(self,step=None, scope_name=''): top_image = self.top_image subdir = self.log_subdir top_inds = self.batch_top_inds top_labels = self.batch_top_labels top_pos_inds = self.batch_top_pos_inds top_targets = self.batch_top_targets proposals = self.batch_proposals proposal_scores = self.batch_proposal_scores gt_top_boxes = self.batch_gt_top_boxes gt_labels = self.batch_gt_labels if gt_top_boxes is not None: img_gt = draw_rpn_gt(top_image, gt_top_boxes, gt_labels) # nud.imsave('img_rpn_gt', img_gt, subdir) self.summary_image(img_gt, scope_name + '/img_rpn_gt', step=step) if top_inds is not None: img_label = draw_rpn_labels(top_image, self.top_view_anchors, top_inds, top_labels) # nud.imsave('img_rpn_label', img_label, subdir) self.summary_image(img_label, scope_name+ '/img_rpn_label', step=step) if top_pos_inds is not None: img_target = draw_rpn_targets(top_image, self.top_view_anchors, top_pos_inds, top_targets) # nud.imsave('img_rpn_target', img_target, subdir) self.summary_image(img_target, scope_name+ '/img_rpn_target', step=step) if proposals is not None: rpn_proposal = draw_rpn_proposal(top_image, proposals, proposal_scores, draw_num=20) # nud.imsave('img_rpn_proposal', rpn_proposal, subdir) self.summary_image(rpn_proposal, scope_name + '/img_rpn_proposal',step=step)
def log_rpn(self, step=None, scope_name='', loss=None, tensor_board=True, draw_rpn_target=False): top_image = self.top_image subdir = self.log_subdir top_inds = self.batch_top_inds top_labels = self.batch_top_labels top_pos_inds = self.batch_top_pos_inds top_targets = self.batch_top_targets proposals = self.batch_proposals proposal_scores = self.batch_proposal_scores gt_top_boxes = self.batch_gt_top_boxes gt_labels = self.batch_gt_labels total_img = None if gt_top_boxes is not None: total_img = draw_rpn_gt(top_image, gt_top_boxes, gt_labels) # nud.imsave('img_rpn_gt', img_gt, subdir) if draw_rpn_target: img_label = draw_rpn_labels(top_image, self.top_view_anchors, top_inds, top_labels) # nud.imsave('img_rpn_label', img_label, subdir) total_img = np.concatenate( (total_img, img_label), 1) if total_img is not None else img_label img_target = draw_rpn_targets(top_image, self.top_view_anchors, top_pos_inds, top_targets) # nud.imsave('img_rpn_target', img_target, subdir) total_img = np.concatenate((total_img, img_target), 1) if proposals is not None: rpn_proposal = draw_rpn_proposal(top_image, proposals, proposal_scores) if loss != None: text = 'loss c: %6f r: %6f' % loss font = cv2.FONT_HERSHEY_SIMPLEX text_pos = (0, 25) cv2.putText(rpn_proposal, text, text_pos, font, 0.5, (5, 255, 100), 0, cv2.LINE_AA) if total_img is not None: total_img = np.concatenate((total_img, rpn_proposal), 1) else: total_img = rpn_proposal # print('\nproposal_scores= {}\n'.format(proposal_scores)) # nud.imsave('img_rpn_proposal', rpn_proposal, subdir) if tensor_board: self.summary_image(total_img, scope_name + '/top_view', step=step) return total_img
def log_rpn(self, step=None, scope_name='', loss=None, tensor_board=True, draw_rpn_target=False): top_image = self.top_image subdir = self.log_subdir top_inds = self.batch_top_inds top_labels = self.batch_top_labels top_pos_inds = self.batch_top_pos_inds top_targets = self.batch_top_targets proposals = self.batch_proposals proposal_scores = self.batch_proposal_scores gt_top_boxes = self.batch_gt_top_boxes gt_labels = self.batch_gt_labels total_img = None if gt_top_boxes is not None: total_img = draw_rpn_gt(top_image, gt_top_boxes, gt_labels) # nud.imsave('img_rpn_gt', img_gt, subdir) if draw_rpn_target: img_label = draw_rpn_labels(top_image, self.top_view_anchors, top_inds, top_labels) # nud.imsave('img_rpn_label', img_label, subdir) total_img = np.concatenate((total_img, img_label), 1) if total_img is not None else img_label img_target = draw_rpn_targets(top_image, self.top_view_anchors, top_pos_inds, top_targets) # nud.imsave('img_rpn_target', img_target, subdir) total_img = np.concatenate((total_img, img_target), 1) if proposals is not None: rpn_proposal = draw_rpn_proposal(top_image, proposals, proposal_scores) if loss != None: text = 'loss c: %6f r: %6f' % loss font = cv2.FONT_HERSHEY_SIMPLEX text_pos = (0, 25) cv2.putText(rpn_proposal, text, text_pos, font, 0.5, (5, 255, 100), 0, cv2.LINE_AA) if total_img is not None: total_img = np.concatenate((total_img, rpn_proposal), 1) else: total_img = rpn_proposal # print('\nproposal_scores= {}\n'.format(proposal_scores)) # nud.imsave('img_rpn_proposal', rpn_proposal, subdir) if tensor_board: self.summary_image(total_img, scope_name + '/top_view', step=step) return total_img